U.S. Department of Health and Human Services
Michael Krashes
 

 Contact Info

 
Tel: 301-827-0960
Email: michael.krashes@nih.gov
 

 Select Experience

 
  • Ph.D.University of Massachusetts Medical School2009
 

 Related Links

 

    ‚Äč

    Specialties
    • Neuroscience/Neurophysiology/Neurodevelopment

    Research in Plain Language

    Hunger is an intensely strong motivational state that every human being battles on a daily basis. Importantly, its abnormal regulation lies at the heart of obesity and feeding disorders. It is remarkable how little we know about its cause. Our research group tries to understand how the brain works to control feeding behavior using the rodent brain as a model. We are interested in studying how the brain brings together information sensed from its external environment and its own internal states, including memory, to guide eating behavior.

    Feeding, and the subsequent nutrition gained from this particular act, is a fundamental behavior shared by all living organisms. In short, humans, like all species, must eat to survive. Animals must satiate hunger and meet energy needs. They must detect and remember stimuli linked with getting food. In addition, these external cues have different meanings depending on the internal state of the organism. For example, although we are aware of the location of our refrigerator at all times, we only retrieve food from it when we feel hungry.

    Feeding can be simplistically divided into three phases. In phase one, a brain region called the hypothalamus integrates with internal hormones and signals to regulate energy balance. In phase two, the pleasurable and rewarding aspects influence the drive to obtain food. In phase three, memory processes direct the learning and memory of food locations. Prior studies have investigated these phases of eating separately. However, these phases are equally important and it makes sense to study their interaction.

    Our research aims to understand the connection between these phases. We try to tease apart the functions of the brain circuits involved in appetite. Our studies examine the relationship between satiety signals from the hypothalamus and neural networks that control food seeking. We study the neural circuits that guide the behavior of obtaining food. We focus on brain systems that underlie motivational drives and learning and memory processes. To achieve this, we use a combination of genetic and molecular tools.