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Approach

Purpose

Main Users

Examples

Visual, summary
statistics

Identify obvious
trends/patterns

Clinicians

AGP, time-in-
range, mean, SD,
GMI, GRI

Integrates machine
Statistical, models Predictive modeling learning, deep learning,

entire time series  using algorithms and advanced
algorithms

Quantify, compare, Predict future glucose Predict risk, classify
and model complex levels and classify subtypes, optimize

dynamics states therapy,
Statisticians, Data scientists, digital Sessti?;zh?jris’itr;falth
researchers health developers y  dig

therapeutics developers

Al-powered CGM or Al-
Functional principal Clinically meaningful  powered closed-loop

components, patterns from complex insulin delivery, image-

glucodensity CGM data based complication
detection
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USING ML ML TO IDENTIFY MECHANISMS
OF METABOLIC SUBPHENOTYPES

Gold standard metabolic testing combined with
demographics established metabolic
subphenotypes (muscle IR, hepatic IR, beta cell
dysfunction, or decreased incretin effect)

A variety of postprandial glucose concentrations was
observed with 16 tests in 180 minutes

OGT Ts were analyzed with ML to predict the
metabolic subphenotypes of the subjects who were
apparently normoglycemic or had prediabetes




USING ML ML TO IDENTIFY MECHANISMS
OF METABOLIC SUBPHENOTYPES

The machine-learning models trained with glucose
time series from in-clinic OGT Ts predicted the
subphenotypes with areas under the curve (AUCs)
of 95% for muscle insulin resistance, 89% for B-cell
deficiency and 88% for impaired incretin action

For at-home OGTTs (vs in-clinic) model prediction
performance was similar: muscle IR (AUC = 88%)
and [3-cell function (AUC = 84%)
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