Considerations and Recommendations when Reporting Studies on Glucose Metabolism in Mouse Models

VANDERBILT

School of Medicine

Julio E. Ayala, PhD

Department of Molecular Physiology & Biophysics Vanderbilt Mouse Metabolic Phenotyping Center Vanderbilt Center for Addiction Research

Typical Tests of Glucose Metabolism in Mouse Models

Mouse model with aberrant glucose phenotype

Glucose Tolerance Test

Insulin Tolerance Test

Hyperinsulinemic-euglycemic Clamp

Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT)

Glucose Tolerance Test

Dose Glucose:

Measure blood glucose over 90-120 min

Mouse model with aberrant glucose phenotype

Insulin Tolerance Test

Glucose Tolerance Test

Insulin Tolerance Test

Glucose Tolerance Test (GTT)

Oral

Fast

Mouse model with aberrant glucose phenotype

Glucose Tolerance Test

Glucose Tolerance Test

- Translated from a diagnostic test in humans to a "quantitative" phenotyping test in mice
- Not indicative of insulin sensitivity
 - Insulin secretion
 - Insulin action
 - Glucose effectiveness

GTT: How to present results Relative to basal vs. absolute glucose

GTT: How to present results Statistics

ITT: How to present results

Similar issues as GTT

- Absolute vs. relative fall in glucose
- Time point vs. AOC statistics

Other considerations

- Insulin has a short half-life
- Counter-regulation

 Rate of fall in glucose during the first 15 min

Hyperinsulinemic-euglycemic clamp

□ Fasting 20 ■ Clamp Hyperinsulinemic-euglycemic clamp: 15 How to present results Insulin Clamp Basal EndoRa 10 (mg·kg-1·min-1) 250-200 Arterial Glucose 150 (mg/dL) Control Chow High Fat Diet 100 --- Control Chow -D- High Fat Diet 50 □ Fasting ■ Clamp *+ 50 End 40 fast **Tissues Taken** 40 30 120 min Rd 30 Glucose Infusion (mg·kg-1-min-1) 20 $(mq\cdot kq^{-1}\cdot min^{-1})$ Equilibration Clamp 20 Isotopic Glucose Tracer 10 10 Constant Insulin Infusion 30 60 90 -30 0 120 Control Chow High Fat Diet Variable Glucose Infusion Time (min) Replacement RBCs ■ Control Chow □ Fasting 20 ☐ High Fat Diet ■ Clamp 15 Plasma Insulin (µmol·100g tissue-1·min-1) (ng·mL-1)

High Fat Diet

Control Chow

SVL

Gastrocnemius

-90

Other Considerations

Parameters to Report in Publications

Mouse Traits:

- Age
- Sex
- Strain
- Details of genetic modifications

Environment:

- Light:Dark cycle
- Housing temperature
- Breeding scheme

Procedural Parameters:

- Fast duration
- Dosing calculation
- Sampling method

Fast Duration

Fast Duration: Effects on Metabolic Tests

Glucose Tolerance Test

Andrikopoulos et al Am J Physiol Endo Metab 2008

Hyperinsulinemic-euglycemic clamp

Dosing Calculation

The norm

Humans: fixed dose regardless of weight

Mice: based on **total** body weight

	body weight (g)	% body	glucose dose (mg)
 lean	20	3	40
 obese	30	35	60
 obese (adjusted)	30	35	40

Recommendation

- If body composition is known, base the dose on lean mass
- Otherwise, a fixed dose is appropriate

Deficiencies in the Field

- Lack of detailed description of methods
- Lack of detailed presentation of results

How to fix them

- Describe how the experiment was performed
- Present data in a manner that can be interpreted

Ayala JE, Bracy DP, McGuinness OP and Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. (2006) *Diabetes* 55: 390-397.

McGuinness OP, Ayala JE, Laughlin MR and Wasserman DH. NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. (2006) *Am J Physiol Endocrinol Metab* 297: E849-855.

Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH and McGuinness OP for the NIH-Mouse Metabolic Phenotyping Centers. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. (2010) *Dis Model Mech* 3: 525-534.