The Land that Time Forgot

How bridges to nowhere, abandoned tracks, and sinkholes stand between us and the diabetes care we deserve (and how to fix them)

Mark A Clements, MD PhD Professor, Pediatrics Pediatric Endocrinology Children's Mercy Hospital The Rick and Cathy Baier Family Endowed Chair in Pediatric Endocrinology

Medical Director, Pediatric Clinical Research Unit

Director, Endocrine/Diabetes Research

TACE

Disclosures

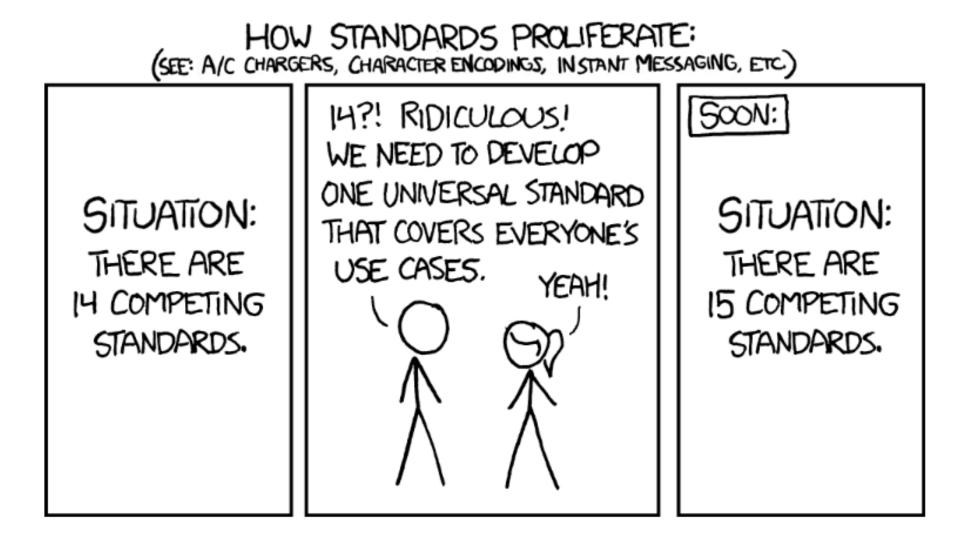
Chief Medical and Strategy Officer, Glooko **Research support, Abbott Diabetes** Care **Research support, Dexcom Research support from** NIDDK, NCATS, NICHD **JDRF CIHR Helmsley Charitable Trust**

Thanks

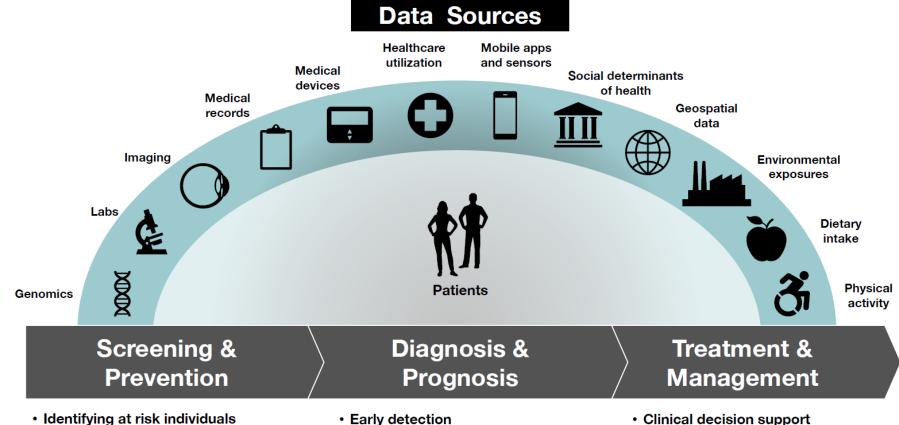
To Juan Espinoza, with whom I work closely, and whose images I borrowed for some of my slides

What are the bridges to nowhere, abandoned tracks, and sinkholes?

- Bridges to nowhere: Data silos with little to no interoperabilities
- Abandoned tracks: multiple competing data standards and specifications
- Sinkholes: data ownership claims impeding integration, interoperability and innovation



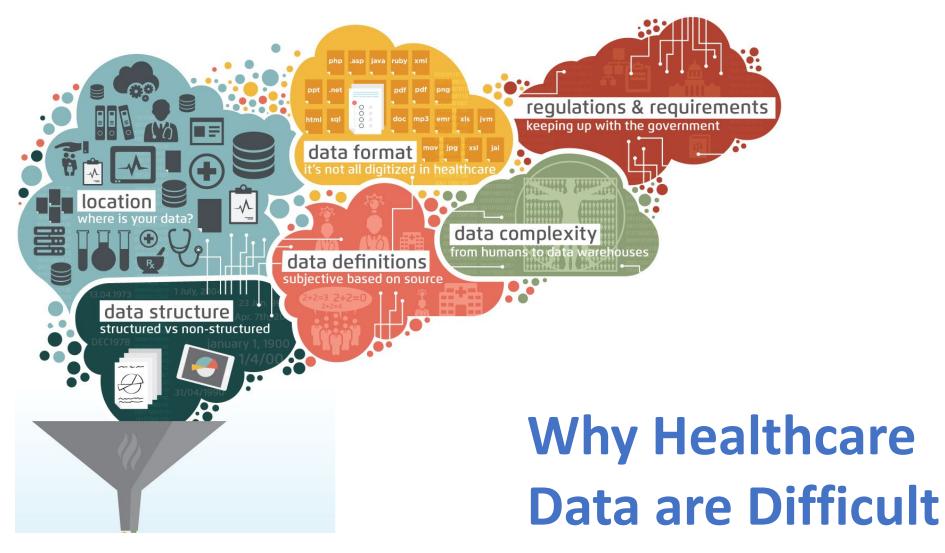
Data types and sources in diabetes and metabolic disease care are diverse



- Al-enabled remote monitoring
- Al-driven behavior modification
- Early detection
- Risk stratification
- Comorbidity screening
- Patient support and education

- Clinical decision support
- Treatment optimization
- Comorbidity management
- Population health management

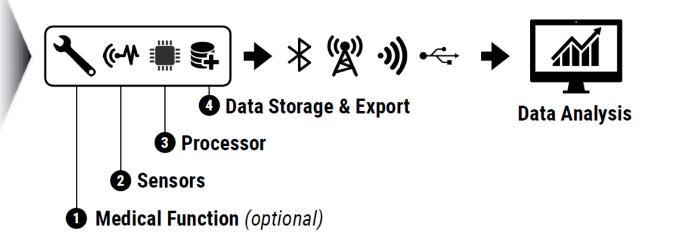
Potential Applications



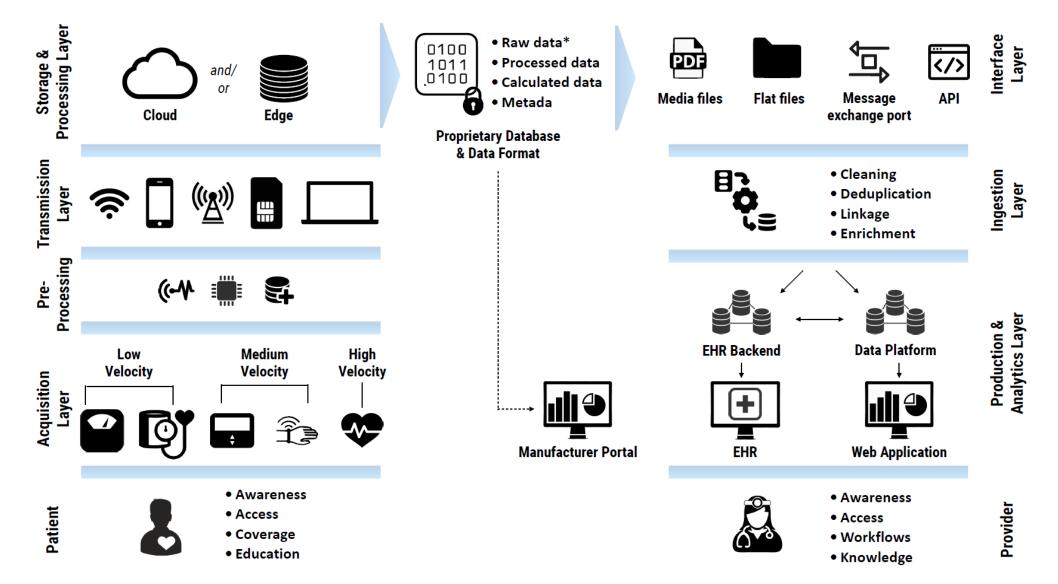
Adapted from https://www.healthcatalyst.com/learn/insights/5reasons-healthcare-data-is-difficult-to-measure

Abstraction of Devices

- Electrophysiological sensors
- Photoplethysmographic sensors
- Biochemical sensors
- Acoustic sensors
- Mechanical sensors
- Amperometric sensors
- GPS
- Accelerometers
- Thermal sensors



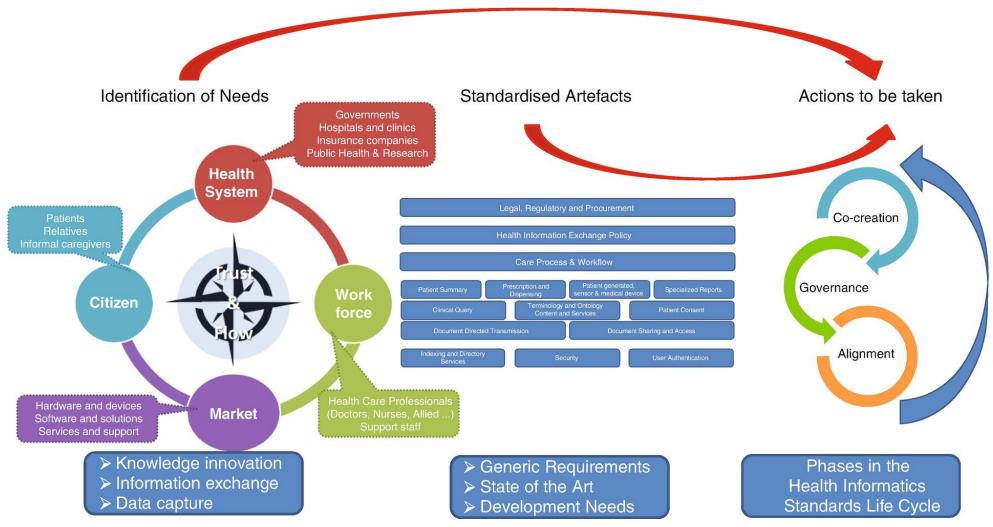
Bridges to nowhere



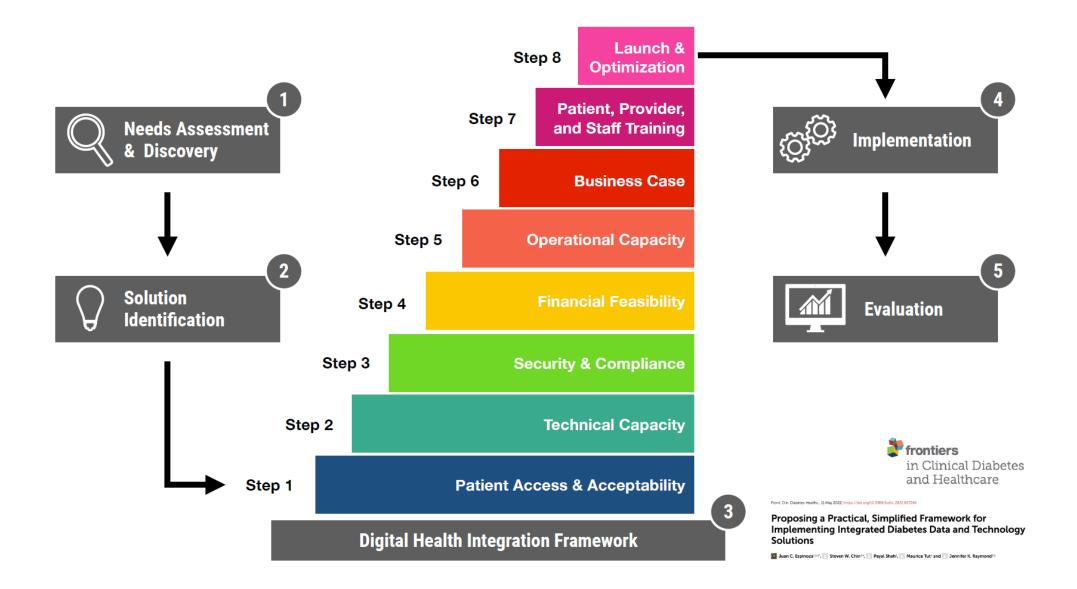
Gaps

Data ownership/rights Risk Mitigation/contracting Regulatory/Privacy obligations Multiple competing data standards/specifications OMOP, PCORNET, T1D Exchange, CDISC Multiple competing data access methods Lack of technical expertise and resources at healthcare institutions

Designing Data Interoperability is Complex



Schultz S, Stegwee R, Chronaki C; Standards in Healthcare Data in Fundamentals of clinical data science, editors Kubben P, Dumontier M, Dekker A; pp19-36; first online 22 Dec 2018; accessed 28 May 2025



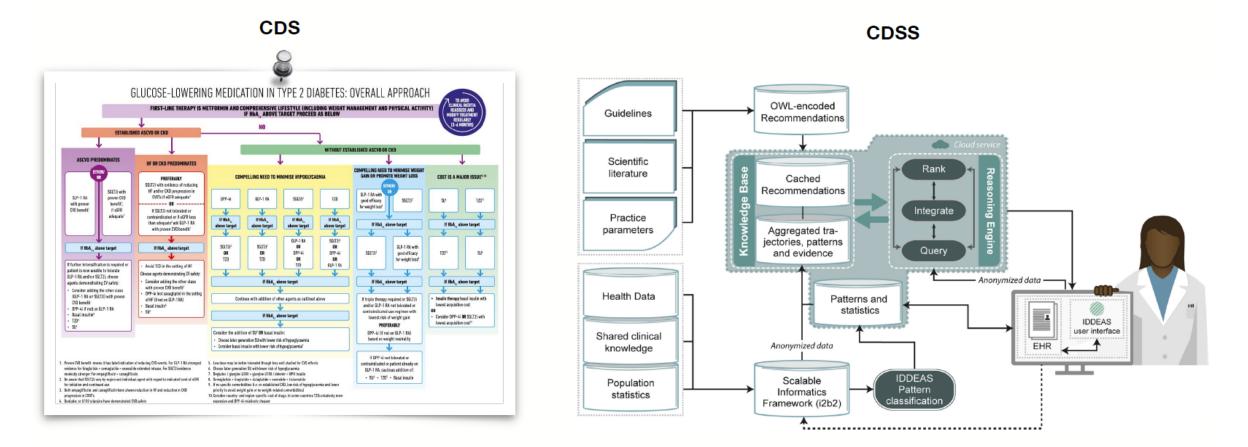
The pace of innovation in diabetes care is increasing yet...

- It is still difficult to visualize the real costs that data silos and lack of standards create
 - In healthcare delivery
 - In innovation and research
- I would argue that the cost is quite significant and that we have an ethical obligation to design interoperable data ecosystems that support the creation of true learning health networks

What becomes possible with true data interoperability (after solving for data standards)?

14

Clinical Decision Support Systems for Diabetes



- Davies, M.J., D'Alessio, D.A., Fradkin, J. et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61, 2461–2498 (2018). <u>https://doi.org/10.1007/s00125-018-4729-5</u>
- Clausen CE, Leventhal BL, Nytrø Ø, et al. Clinical Decision Support Systems: An Innovative Approach to Enhancing Child and Adolescent Mental Health Services. J Am Acad Child Adolesc Psychiatry. 2021;60(5):562-565. doi:10.1016/ j.jaac.2020.09.018

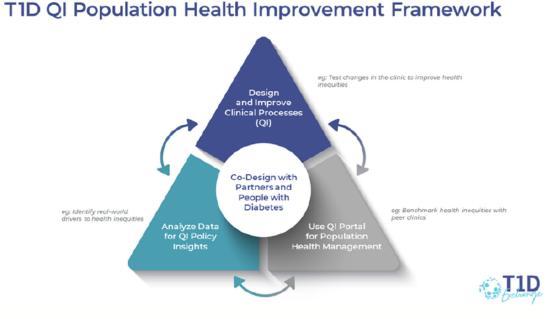
Population Health Management Dashboards

ts								
		% Time Worn	Avg G	% Time in Range	% 0	hange in TIR	% Time Below 70	% Time Below 54
below 55 >	DASH	85%	179	50%	-7.5		3.7%	1.6%
		84%	180	37%	-13.4		10.2%	1.4%
		86%	180	56%		25.5	5.0%	1.0%
s below 70		86%	137	76%		3.3	4.4%	0.2%
in TIR >	Tandem	86%	192	42%	-23.5		1.0%	0.0%
		85%	168	56%	-20.4		0.3%	0.0%
65%		53%	279	21%		10.7	0.0%	0.0%
(1)22()	DASH	86%	205	36%	-5.3		1.4%	0.4%
	DASH	79%	183	38%	-14.0		3.6%	0.7%
		85%	194	48%		2.6	3.3%	0.8%
	Tandem	81%	201	50%	-1.1		0.0%	0.0%
	Tandem	84%	188	54%		5.4	1.0%	0.4%
		85%	179	55%		11.4	1.5%	0.2%
	Tandem Order	85%	169	62%	-1.2		0.2%	0.0%
	DASH	84%	163	63%		0.9	2.1%	0.1%
	DASH	82%	157	64%	-8.3		1.7%	0.3%
	Pump Class	86%	175	65%		14.5	0.9%	0.0%
ng Data		27%	190	18%	-31.4		0.0%	0.0%
r time <	DASH Order					0.0		
					1	0.0		
						0.0		
ing Targets	Tandem Order	86%	153	67%	-6.6		1.6%	0.0%
	EROS	82%	159	70%		10.5	3.0%	0.4%
		86%	168	71%		16.0	0.6%	0.0%
	Omnipod 5 Order	85%	146	74%		0.4	1.9%	0.5%
	Tandem	86%	139	75%	-3.3		3.2%	0.3%
		86%	150	75%	-10.7		0.3%	0.0%

Ferstad J et al., Population-level management of type 1 diabetes via continuous glucose monitoring and algorithm-enabled patient prioritization: Precision health meets population health; Pediatric Diabetes 2021 Nov;22(7):982-991.

Learning Health Networks are powered by data

- Intended for use outside of typical 1:1 clinician-patient interactions
- Improve quality of care
- Identify and prioritize patients at higher risk
- Match patients to intervention pathways
- Help direct limited resources to the patient who need them the most

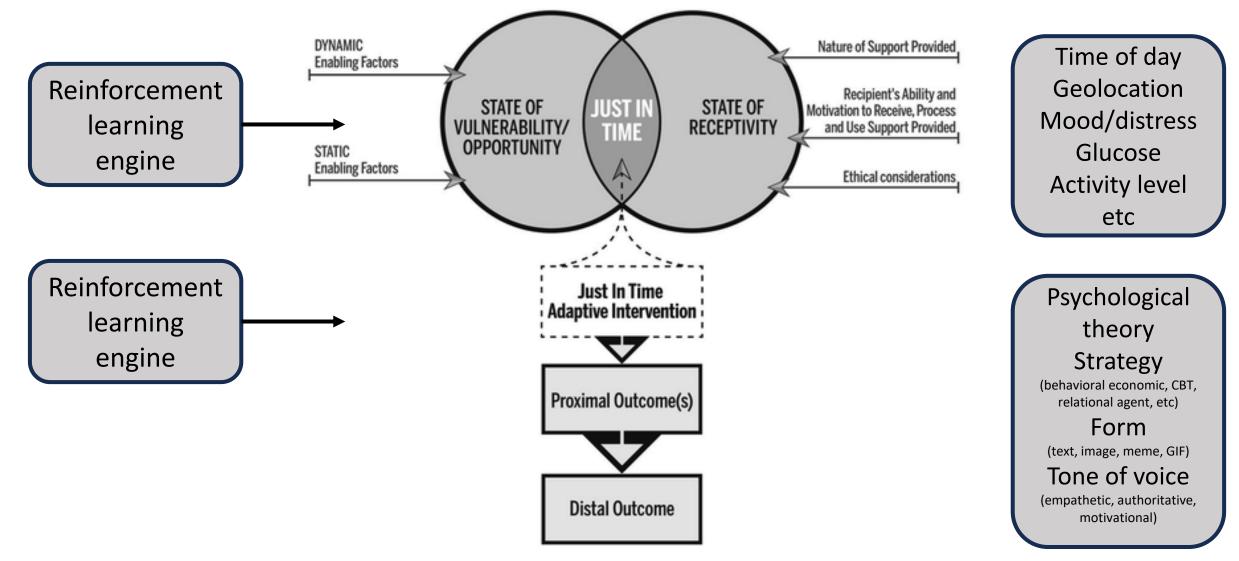


- Schmittdiel JA, Gopalan A, Lin MW, Banerjee S, Chau CV, Adams AS. Population Health Management for Diabetes: Health Care System-Level Approaches for Improving Quality and Addressing Disparities. Curr Diab Rep. 2017;17(5):31. doi:10.1007/s11892-017-0858-3
- Prahalad P, Rioles N, Noor N, et al. T1D exchange quality improvement collaborative: Accelerating change through benchmarking and improvement science for people with type 1 diabetes. J Diabetes. 2022;14(1):83-87. doi:10.1111/1753-0407.13234

What becomes possible with true data interoperability (after solving for data standards)? (continued)

Persons with diabetes or metabolic disease

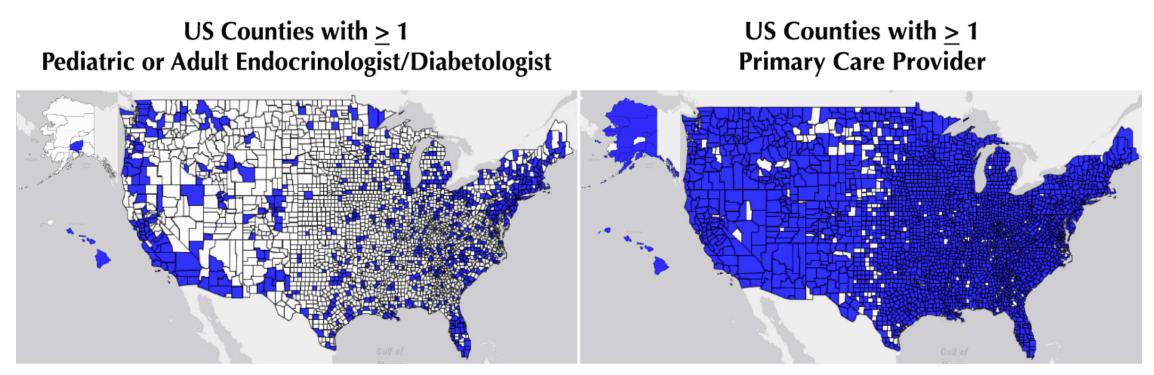
Just-in-time Adaptive Interventions: Identifying the right context for nudging



Nahum-Shani I et al., Health Psychology 2015

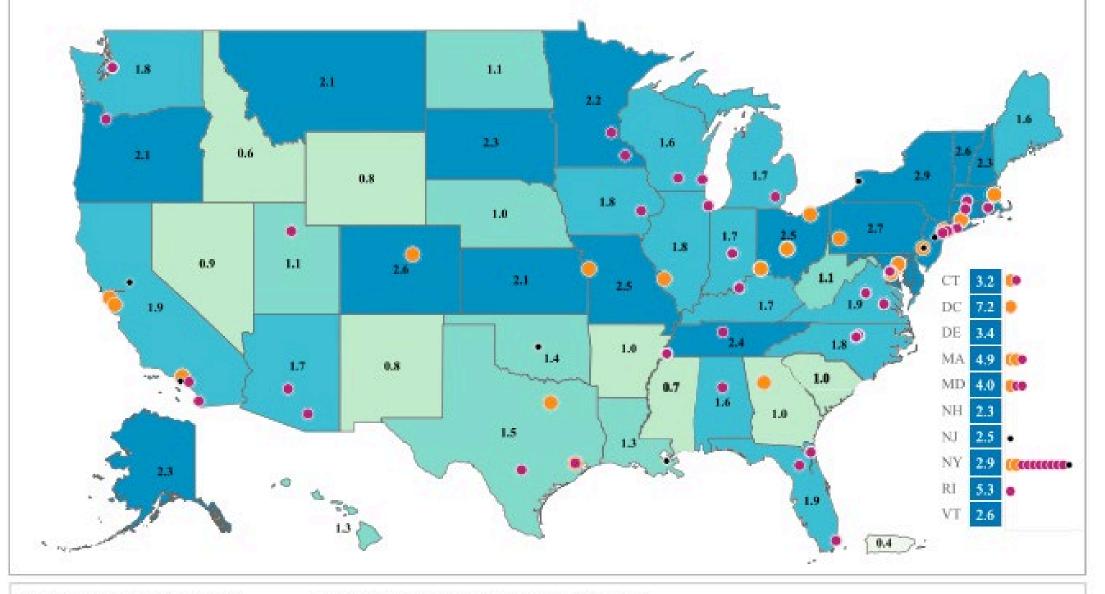
Why these innovations matter...

There are not enough specialists to manage endocrine/diabetes conditions!



Distributions of Endocrinologists/Diabetologists and Primary Care Providers Across the US

Oser SM, Oser TK. Diabetes Technologies: We Are All in This Together. Clinical Diabetes 2020;38(2):188-9.



Subspecialists Per 100000 Children >0-0.5 Per 100000 Children >0.5-1.0 Per 100000 Children >1.0-1.5 Per 100000 Children >1.5-2.0 Per 100000 Children >2.0 Per 100000 Children Fellowship Programs, Size Based on Number of Positions Filled, Academic Year 2021 to 2022

0 Filled Positions

1-3 Filled Positions

>3 Filled Positions

Child Health Needs and the Pediatric Endocrinology Workforce: 2020–2040

Tandy Aye, MD,^{e,b} Charlotte M. Boney, MD, MS,^c Colin J. Orr, MD, MPH,^{d,e} Mary B. Leonard, MD, MSCE,^b Laurel K. Leslie, MD, MPH,^f David B. Allen, MD^g

Diabetes self-management is complex

Pillars of Self-Management

Glucose Monitoring

Insulin Dosing

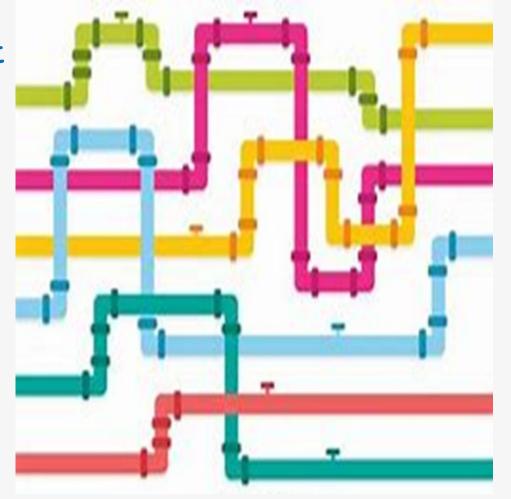
Healthy Eating/Carb Count

Physical Activity

Healthy Coping

Problem solving

Reducing Risk

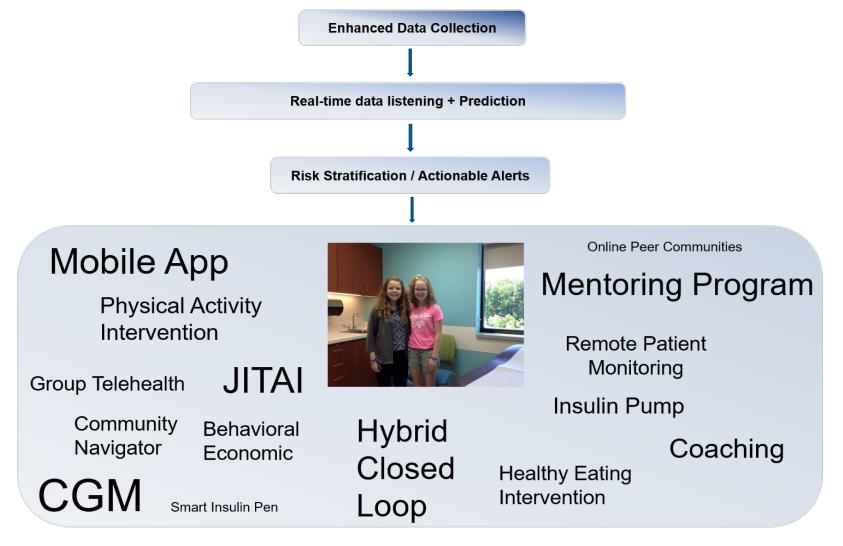


Intervention Strategies

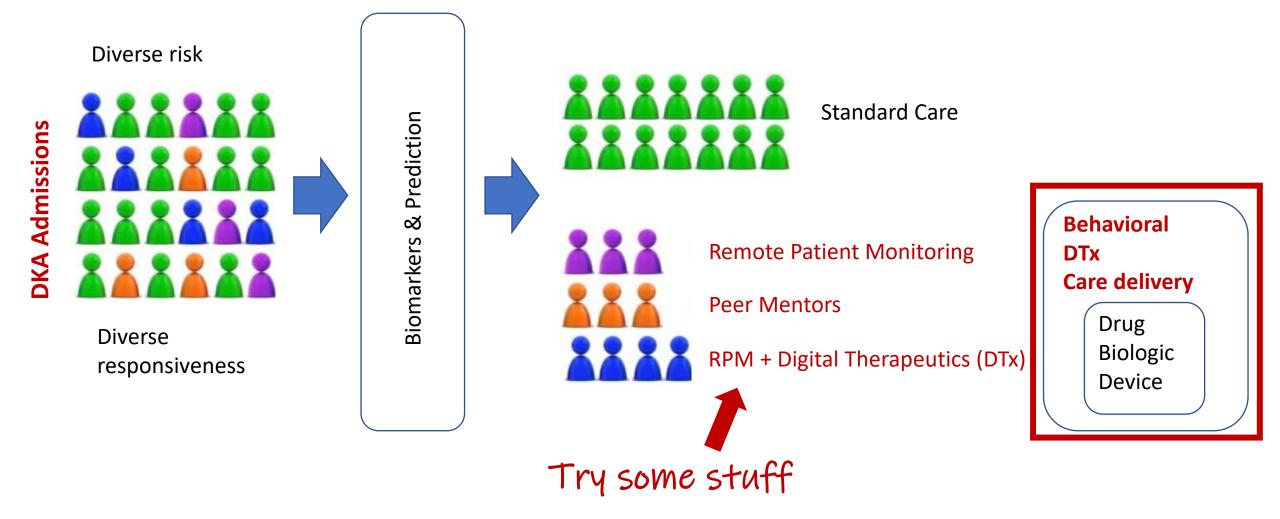
Peer mentoring **Behavioral Economics** Mindfulness/Meditation **Relational agent Cognitive Behavioral Therapy** Just-in-time Adaptive Intervention

And more...

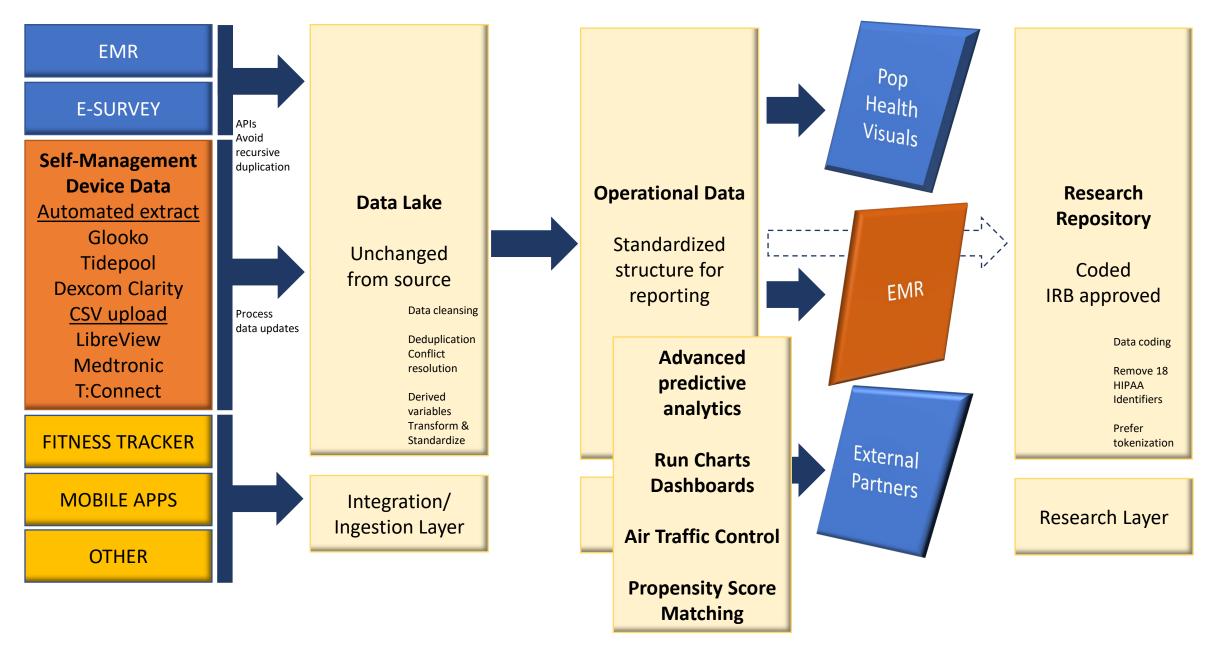
We ultimately want to achieve a "smart" system:



Diabetes Care Transformation: Population Health Management



D-DATA DOCK STRUCTURE



Predicting hospitalization for DKA

DIABETES TECHNOLOGY & THERAPEUTICS Volume 00, Number 00, 2025 © Mary Ann Liebert, Inc. DOI: 10.1089/dia.2024.0484

Open camera or QR reader and scan code to access this article and other resources online

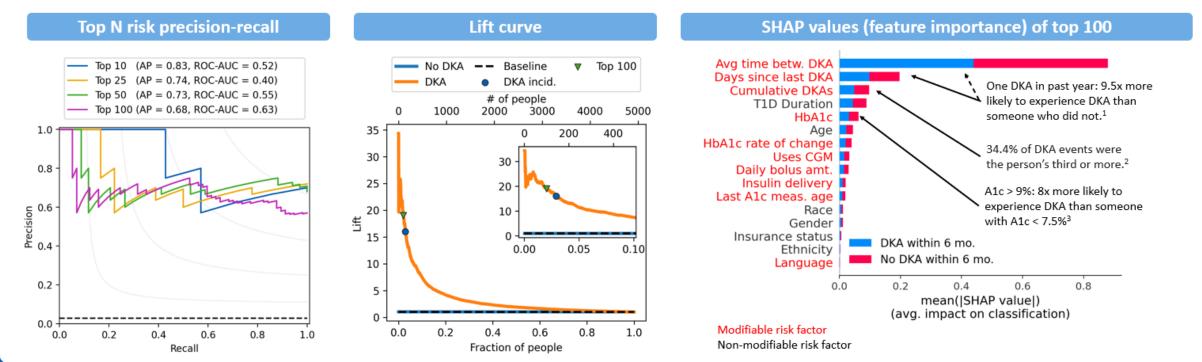
ORIGINAL ARTICLE

Predicting and Ranking Diabetic Ketoacidosis Risk among Youth with Type 1 Diabetes with a Clinic-to-Clinic Transferrable Machine Learning Model

Craig Vandervelden, PhD,¹ Brent Lockee, BS,¹ Mitchell Barnes, BS,¹ Erin M. Tallon, PhD, RN,¹ David D. Williams, MPH,¹ Anna Kahkoska, MD, PhD,^{2–4} Angelica Cristello Sarteau,² Susana R. Patton, PhD,⁵ Rona Y. Sonabend, MD,⁶ Jacob D. Kohlenberg, MD,⁷ and Mark A. Clements, MD, PhD¹

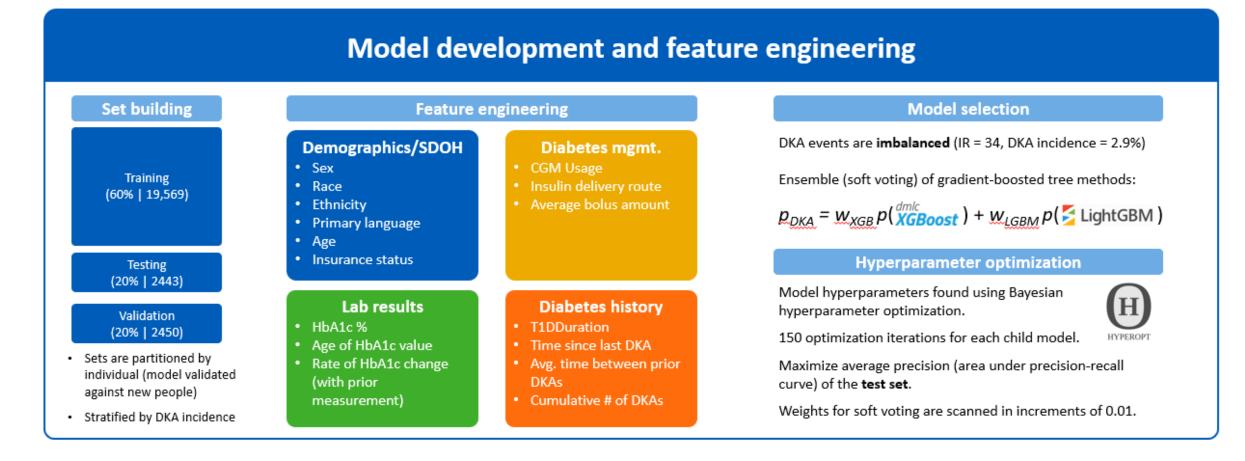
DKA risk prediction model performance

Results: model performance and feature importance



All results from the (out-of-sample) validation set

The solution: build model with features derived from T1D Exchange data standard



What is the T1D Exchange Quality Improvement Collaborative?

A network of 62 centers engaged in innovative care design, audit and feedback, and benchmarking

Centers share data from their electronic health records to a central data repository

The data specification is very detailed and includes clinical observations, patient reported outcomes, and clinician documented care factors

When clinics cannot share a particular data feature, they are generally working toward changing their clinical documentation to allow it

End result: Any forecasting models built using T1D Exchange data are immediately evaluable and potentially disseminable to the 62 T1D Exchange centers

New, scalable model to classify $\Delta A1c > 0.3\%$

Can assess accuracy as a classification problem: "Can the model accurately classify people whose A1c rises over 0.3% (clinically significant threshold)?"

Classification metrics:

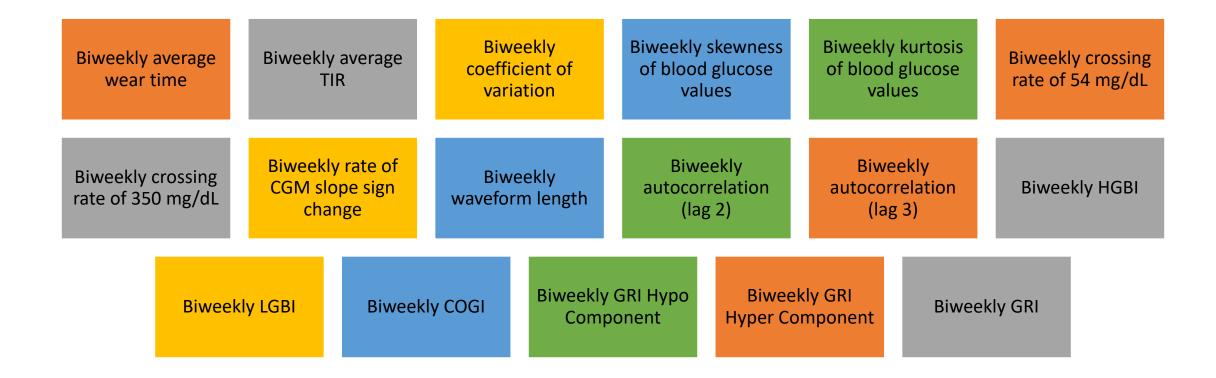
- **Sensitivity:** true positive rate
- **Specificity:** true negative rate
- Positive predictive value (PPV): chance that predictions with ΔA1c > 0.3% are true
- Negative predictive value (NPV): chance that ΔA1c < 0.3% are true

ΔA1c > 0.3%	Original	New	
	model	model	
Sensitivity	21.3%	26.4%	
Specificity	86.1%	89.8%	
PPV	55.5%	54.7%	
NPV	57.3%	72.3%	

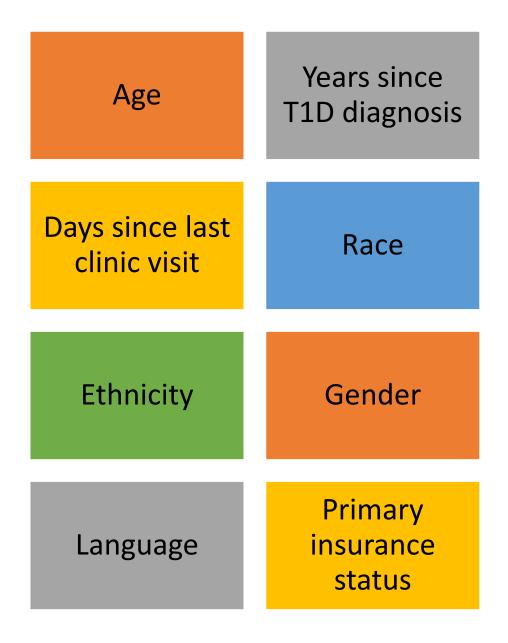
ΔA1c > 0.4%	Original	New	
	model	model	
Sensitivity	11.7%	16.6%	
Specificity	93.5%	95.3%	
PPV	54.1%	55.3%	
NPV	62.0%	76.5%	

New scalable model for 14-day Time in Range

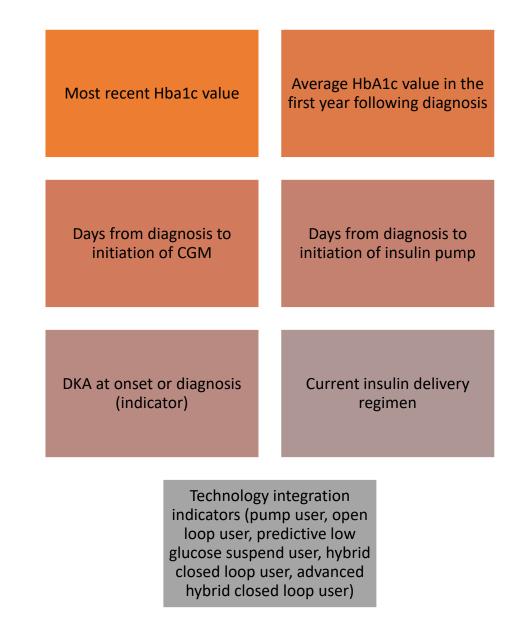
TIR Features Derived from CGM Data

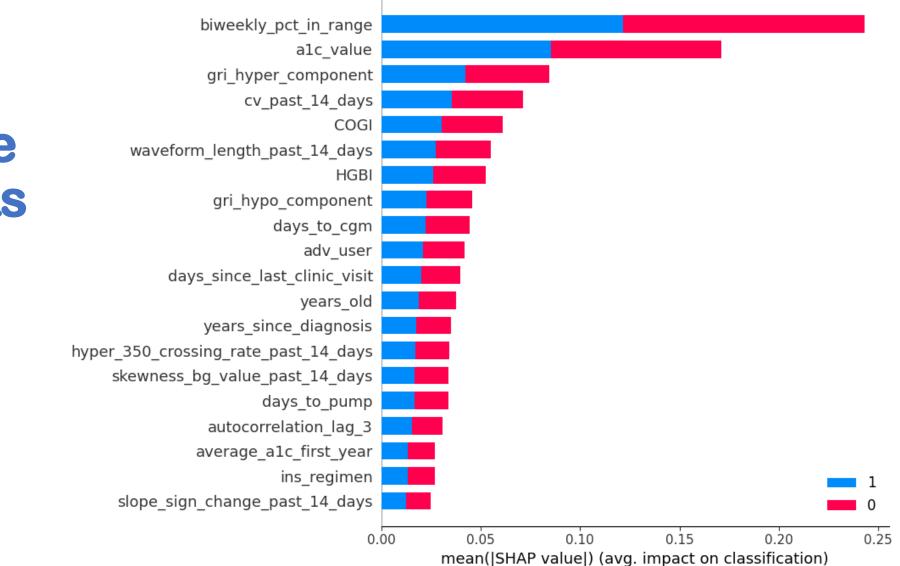


TIR Features from EHR Demographics



TIR Features from Clinical Observations





Feature Weights

Innovations in care based on non-predicted biomarkers

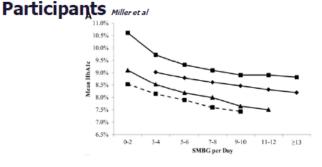
The Six Habits

- 1 Uses Continuous Glucose Monitor or checks blood glucose 4 times/day
- 2 Gives 3 or more insulin injections per day
- 3 Gives insulin before eating
- 4 Uses insulin pump
- 5 Reviewed blood glucose data for patterns at least once since the last clinic visit
- 6 Changed insulin doses at least once since the last clinic visit (by family or clinic)

The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus

The Diabetes Control and Complications Trial Research Group*

Evidence of a Strong Association Between Frequency of Self-Monitoring of Blood Glucose and Hemoglobin A1c Levels in T1D Exchange Clinic Registry

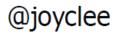


Original Article

A contrast between children and adolescents with excellent and poor control: the T1D exchange clinic registry experience

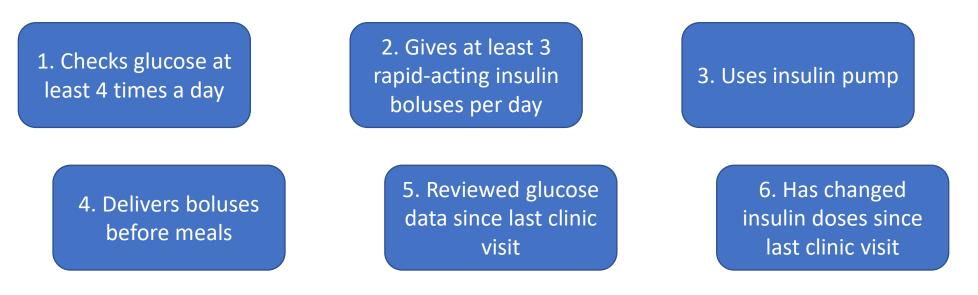
A Minority of Patients with Type 1 Diabetes Routinely Downloads and Retrospectively Reviews Device Data *Wong et al*

- BG frequency per day ≥5
- Bolusing before meals
- Missing doses < 1 / week
- Routine Reviewers of Data had lower A1c (7.8%) vs. those who did not (8.6%)

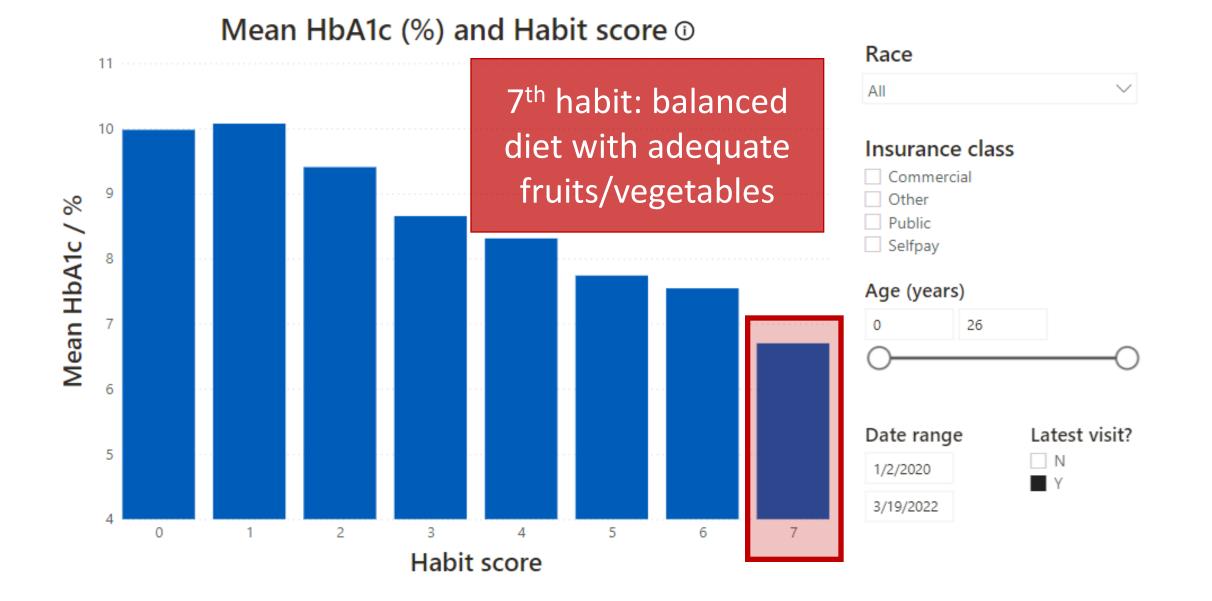


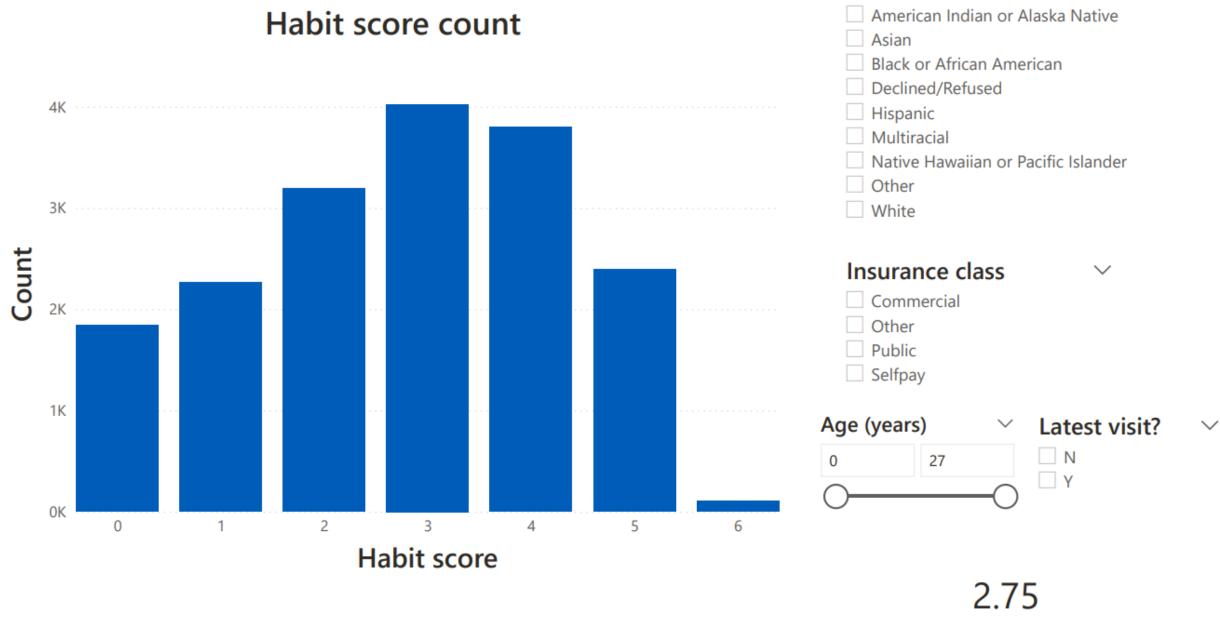
Feasibility of Electronic Health Record Assessment of 6 Pediatric Type 1 Diabetes Self-management Habits and Their Association With Glycemic Outcomes

Joyce M Lee ¹², Andrea Rusnak ², Ashley Garrity ¹², Emily Hirschfeld ¹, Inas H Thomas ², Michelle Wichorek ³, Jung Eun Lee ⁴, Nicole A Rioles ⁵, Osagie Ebekozien ⁵, Sarah D Corathers ⁶



Lee et al. JAMA Diab & Endo 2021





Average habit score

Race

Population-level management of type 1 diabetes via continuous glucose monitoring and algorithm-enabled patient prioritization: Precision health meets population health

Johannes O. Ferstad¹ | Jacqueline J. Vallon¹ | Daniel Jun¹ | Angela Gu² | Anastasiya Vitko² | Dianelys P. Morales¹ | Jeannine Leverenz³ | Ming Yeh Lee³ | Brianna Leverenz³ | Christos Vasilakis⁴ | Esli Osmanlliu^{3,5} | Priya Prahalad^{3,6} | David M. Maahs^{3,6,7} | Ramesh Johari^{1,6} | David Scheinker^{1,3,8}

Abstract

Objective: To develop and scale algorithm-enabled patient prioritization to improve population-level management of type 1 diabetes (T1D) in a pediatric clinic with fixed resources, using telemedicine and remote monitoring of patients via continuous glucose monitor (CGM) data review.

Research design and methods: We adapted consensus glucose targets for T1D patients using CGM to identify interpretable clinical criteria to prioritize patients for weekly provider review. The criteria were constructed to manage the number of patients reviewed weekly and identify patients who most needed provider contact. We developed an interactive dashboard to display CGM data relevant for the patients prioritized for review.

4T Intervention Technology Teamwork Targets Tight control

TIDE Dashboard

		% Time Worn	Avg G	% Time in Range	%0	hange in TIR	% Time Below 70	% Time Below 54
low 55 >	DASH	85%	179	50%	-7.5		3.7%	1.6%
		84%	180	37%	-13.4		10.2%	1.4%
		86%	180	56%		25.5	5.0%	1.0%
low 70		86%	137	76%		3.3	4.4%	0.2%
TIR >	Tandem	86%	192	42%	-23.5		1.0%	0.0%
		85%	168	56%	-20.4		0.3%	0.0%
%		53%	279	21%		10.7	0.0%	0.0%
	DASH	86%	205	36%	-5.3		1.4%	0.4%
	DASH	79%	183	38%	-14.0		3.6%	0.7%
		85%	194	48%	1	2.6	3.3%	0.8%
	Tandem	81%	201	50%	-1.1		0.0%	0.0%
	Tandem	84%	188	54%	1	5.4	1.0%	0.4%
		85%	179	55%		11.4	1.5%	0.2%
	Tandem Order	85%	169	62%	-1.2		0.2%	0.0%
	DASH	84%	163	63%	(0.9	2.1%	0.1%
	DASH	82%	157	64%	-8.3		1.7%	0.3%
	Pump Class	86%	175	65%		14.5	0.9%	0.0%
ita		27%	190	18%	-31.4		0.0%	0.0%
<	DASH Order				0	0.0		
					0	0.0		
	200 million 2010 million					0.0		
Targets	Tandem Order	86%	153	67%	-6.6		1.6%	0.0%
	EROS	82%	159	70%		10.5	3.0%	0.4%
		86%	168	71%		16.0	0.6%	0.0%
	Omnipod 5 Order	85%	146	74%		0.4	1.9%	0.5%
	Tandem	86%	139	75%	-3.3		3.2%	0.3%
		86%	150	75%	-10.7		0.3%	0.0%

Continuous Blood Glucose Risk Categories

CBG Risk Category	/		Patie	nt Count			ndor		✓ Most Ree	cent Week CBG	\sim
(1) Extreme Lows >	> 1%				122		carelink clarity		1		\sim
(3) Large Drop in T	lime in Range				12		glooko				
(4) Low Time in Ra	inge				90		tconnect				
(5) Insufficient Dat	a				69		connect		Date of \	Veek	
(6) Extreme Highs	> 3%				11				1/1/2022	2 2/27/2022	
(7) No Alerts					11						\frown
Total					315						0-
Date	CBG Risk Category	CBG Days	Wear %	Time in Range	Ratio > 180	Ratio > 250) Ratio < 70	Ratio < 54	TIR Previous Week	Bolus Score	۸
February 20, 2022	(1) Extreme Lows ≥ 1%	7.00	98.66	0.76	0.20	0.03	3 0.04	0.04	0.84		0
February 20, 2022	(1) Extr <mark>eme Lows ></mark> 1%	6.00	68.60	0.57	0.37	0.16			0.17		1
February 20, 2022	(6) Extreme Highs > 3%	Emer	ging	Featu	re: Me	altime	e Insul	in BOL	US Scor	е	1
February 20, 2022	(4) Low Time in Range	7.00	97.82	0.19	0.81	0.56	6 0.00	0.00	0.03		1
February 20, 2022	(4) Low Time in Range	6.00	73.21	0.33	0.67	0.36	5 0.00	0.00	0.23		1
February 20, 2022	(1) Extreme Lows > 1%	7.00	98.41	0.70	0.26	0.01	1 0.04	0.04	0.57		1
Average		5.75	74.87	0.52	0.45	0.22	2 0.02	0.02	0.53		0.59

Rising Tide Alliance Approach

Clinical and Operational Map

STEP 1

Data Source	Referral Reason	STEP 2	Area	
	Clinic-Based	Referral methods vary by		
	Clinic Team Referral	'Reason for Referral'	Core RPM	
EHR	New Onset Diabetes			
& patient forms data	Intake form Positive screening Self-enrollment 			
(Traditional)	Hospital-Based	Who provides		
	DKA Admission	follow-up:	mHealth	
	Case Manager Referral	Rising T1DE team	innearth	
	Timely Monitoring	Certified Diabetes Care Education Specialist		
	EHR monitoring; two A1c values > 9	Hospital social work		
D-Data Dock (Enabled)	Real-time, remote CGM monitoring	 Community Based Organizations 		
	Pop Health Dashboard of all Patients	Digital Health Resources	Behavioral	
	Predicted Risk		Denavioral	
	90-day change in A1c			
	180-day DKA risk		Improving Clinic	

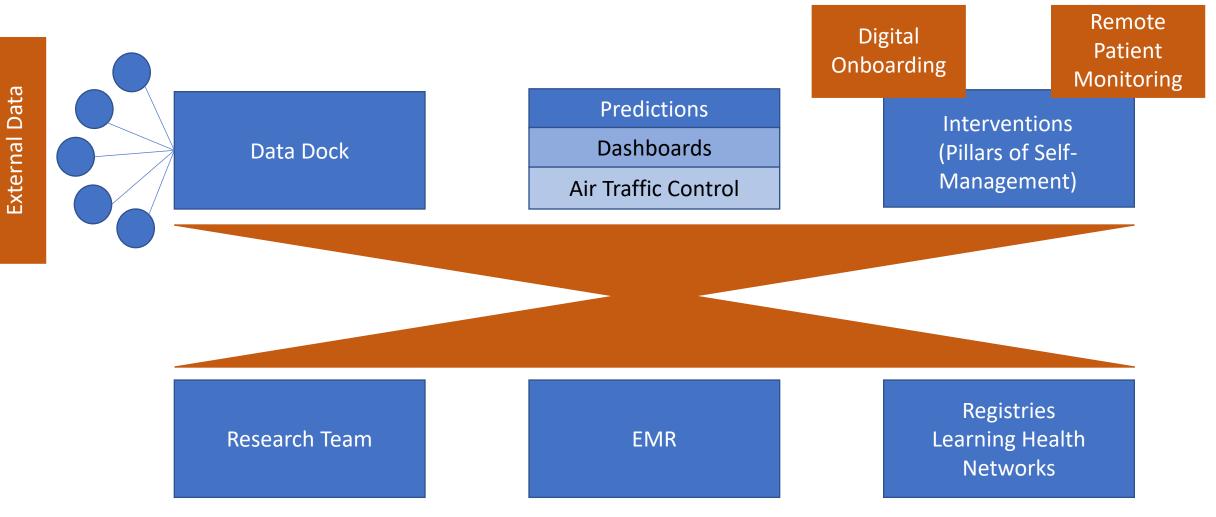
STEP 3

Area	Interventions		
	Diabetes educator biweekly visits in between quarterly standard of care visits		
Core RPM	Additional care referrals		
	Happy Bob – gamified CMD management		
	KIDDO – wrist wearable to promote physical activity		
	MyCare – CMH app focused on education & management		
mHealth	Nudge- uses software to promote physical activity in teens by goal setting, monitoring & daily feedback via text		
	Sweetch- Al-enabled app uses just in time adaptive tech to promote health habits		
	Healthy Eating Habits- MyPlan		
Behavioral	Coin2Dose- financial incentives for bolus engagement		
	Diabetes Discord Peer support promotes healthy coping		
Improving Clinic	Spotlight AQ-smart adaptive patient survey to guide clinic visit discussion		
Experience	QUEST-gathers data in focus groups, semi-structured interviews or surveys		

STEP 4

Performance Tracking

A new kind of ecosystem for care within a diabetes clinic



Conclusion

Lack of data interoperability and standards is very costly

Designing for interoperability saves healthcare dollars Designing for interoperability accelerates research Designing for interoperability accelerates the pace of innovation

Role – Children's Mercy	Name
Executive Lead	Mark Clements
Project Coordinator	Emily DeWit
Diabetes Educators	Katie N, Rachel D, Laura J
Project Assistant 1, 2	Britaney S, Katelyn E
Project Assistant 2,3, 4	Jude E, An H, Claire P
Project Assistant 5, 6	Sarah A, Rebekah E, Priscilla
Project Assistant 7, 8	Megan E, Sophie M
Senior Data Scientist	Brent Lockee
Data Engineer/Pgrmr	Mitchell B, Harsh J
Data Scientist/Pgrmr	Erin T., Kelsey P
Data Scientist/Pgrmr	Craig V., Amey W.
Statistician	David Williams

Role – Childrens Mercy	Name
Executive Lead	Juan Espinoza
Program Manager	Grace Garcia
Program Coordinator	Shahida Qazi
Project Manager	Lawrence Lett
Data Scientist	Eric Williams
Implementation Specialist	Sadaf Javaid
Communications	Rachel Spencer

Role – Lurie Children'	Name			
Advisory Committee Chair	Sanjeev Mehta, Joslin			
Director, Intervention Dev.	Susana Patton, Nemours			
QI Clinical Champion	Ryan McDonough, Children's Mercy			

Role – Stakeholder Advisory	Name
Dave Walton, Sarah Corather	s, Rona Sonabend
Juan Espinoza, Helen DuPless	sis, D. Williams, Purvi Sevak
Nana Jones, Sanjoy Dutta, Gr	egory Howe, Sally Jercha

THE LEONA M. AND HARRY B. HELMSLEY CHARITABLE TRUST

Thank you

- visit https://risingT1DEalliance.org
- email me at <u>maclements@cmh.edu</u>

