Proteus mirabilis CAUTI: Impact of Polymicrobial Interactions on Fitness Requirements

Chelsie Armbruster, PhD

Jacobs School of Medicine and Biomedical Sciences University at Buffalo

Polymicrobial bacteriuria and CAUTI

- 3-10% incidence of bacteriuria per day
 - ~100% if >14 days (common in nursing homes)
 - Polymicrobial colonization
- Proteus mirabilis
 - 26% of 182 recent CAUTIs in 12 nursing homes
 - 42% of these were polymicrobial
 - Enterococcus faecalis, Escherichia coli, Providencia stuartii, Morganella morganii
 - Antibiotic resistant
 - Tetracycline class antibiotics
 - Polymyxin and antimicrobial peptides
 - Emerging ESBL+ and carbapenem resistant isolates
 - Secondary bacteremia
 - 10-13% mortality
 - > if MDR and/or polymicrobial
 - No vaccine

Armbruster, Prenovost, Mobley, Mody JAGS 2017 National Health Safety Network Foxman Infect Dis Clinics of North America 2014

Proteus mirabilis pathogenesis

- Targeted mutagenesis
 - ~4000 genes
 - 52 tested in murine model of UTI (1997-2017)
 - Urease enzyme
 - Flagella (swim/swarm)
 - Fimbriae (17 distinct types)

Genome-wide assessments

- Transcriptome analysis (UTI)
 - Pearson et al Infect Immun 2011
- Signature-tagged mutagenesis (UTI)
 - Zhao et al *Microbiology* 1999
 - Burrall et al Infect Immun 2004
 - Himpsl et al J Med Microbiol 2008

UTI vs CAUTI? Monomicrobial vs polymicrobial?

Stickler Nat Clin Pract Urol 2008 Armbruster, Mobley, Pearson EcoSal Plus 2018 Fernandez-Delgado et al Annals of Microbiology 2015

Transposon insertion site sequencing

Transposon insertion site sequencing (Tn-Seq)

Genetic tool to randomly disrupt genes

P. mirabilis CAUTI Tn-Seq

Armbruster, Forsyth-DeOrnellas, Johnson, Smith, Zhao, Wu, Mobley PLoS Pathogens 2017

P. mirabilis requires a different set of genes for fitness during CAUTI vs UTI

- Commonalities
 - Urease
 - Flagella
 - Amino acid transport and metabolism
- Differences
 - Nitrogen assimilation pathways
 - Central metabolic pathways
 - Fimbriae

Armbruster, Forsyth-DeOrnellas, Johnson, Smith, Zhao, Wu, Mobley *PLoS Pathogens* 2017 Armbruster, Smith, Johnson, DeOrnellas, Eaton, Yep, Mody, Wu, Mobley *Infect Immun* 2017

P. mirabilis CAUTI Tn-Seq: monomicrobial vs polymicrobial infection

Armbruster, Forsyth-DeOrnellas, Johnson, Smith, Zhao, Wu, Mobley PLoS Pathogens 2017

P. mirabilis requires a different set of genes for monomicrobial vs polymicrobial CAUTI

- Commonalities (217 genes)
 - Urease
 - Metal homeostasis
 - Serine utilization
- Differences
 - Fimbriae
 - Iron acquisition
 - Defense mechanisms
 - Branched chain amino acid (BCAA) biosynthesis

Serine utilization is a candidate *P. mirαbilis* fitness factor for UTI and CAUTI

- 5 genes for DL-serine transport and metabolism were fitness factors for both monomicrobial and polymicrobial CAUTI
 - D-serine genes identified in all P. mirabilis genome-wide studies (UTI and CAUTI)
 - D-amino acids are rare, but D-serine is present in urine and serum at relatively high concentrations
 - DL-serine depletion
 - E. coli, M. morganii, P. mirabilis, E. faecalis, P. stuartii

Serine utilization contributes to *P. mirabilis* fitness during monomicrobial and polymicrobial CAUTI

- D-serine ammonia lyase (*dsdA*)
 - Degrades D-serine to pyruvate and ammonia
 - Allows P. mirabilis to use D-serine as sole C or N
- *Pm dsdA* co-challenge experiment:
 - dsdA/WT output
 - Competitive index = $\frac{dsda}{dsdA}$ /WT input

Brauer, White, Learman, Johnson, Armbruster mSphere 2019

BCAA biosynthesis only contributes to *P. mirabilis* fitness during polymicrobial CAUTI

- BCAA biosynthesis genes only identified
 P. stuari by TnSeq during coinfection
 High-
 - Upregulated during UTI
 - BCAA synthesis (ilvD)

- P. stuartii BCAA import
 - High-affinity importer (*livFGHM*)
 - periplasmic binding protein (*livK*)

Summary and Conclusions

- The presence of a catheter changes the bladder environment
 - Impacts which fitness factors are required for colonization and persistence
- Polymicrobial colonization changes the bladder environment
 - Impacts which fitness factors are required for colonization and persistence
- Use the model that best mimics patient population
- Translational implications:
 - Need to understand what genes are essential for a bacterium during monomicrobial and polymicrobial CAUTI for a logical drug target strategy

Acknowledgements

Armbruster Lab

Brian Learman (Lab manager) Aimee Brauer (Research technician) Ashley White (PhD student) Ally Johnson (PhD student) Jordan Gaston (MD student)

Funding

NIH Roo DK105205 (CEA)

Jacobs School of Medicine and Biomedical Sciences University at Buffalo

