Bio-inspired liquid-infused surfaces for reducing bacterial adhesion in catheters

Caitlin Howell
Assistant Professor Biomedical Engineering
Department of Chemical and Biological Engineering
Graduate School of Biomedical Science and Engineering,
University of Maine, Orono, ME, USA
Self-Cleaning Surfaces

Cassie-Baxter State

Wenzel State

Barthlott and Neinhuis 1997 Planta 202 1-8
Nosonovsky 2011 Nature 477 412-413
Microorganisms: Adaptive Foulants

Friedlander et al. 2013, PNAS 110, 5624-5629
Bio-Inspired Slippery Surfaces

Bohn & Federle, 2004, PNAS 101, 14138-14143
Slippery Liquid-Infused Porous Surfaces (SLIPS)

1. Roughening
2. Functionalization
3. Lubricant Addition

Wong and Aizenberg et al., Nature 2011, 477, 443-447
Adv. Funct. Mat. 2014, 24, 6658-6667
Nanotech. 2013, 25, 014019
Nature Comm., 2013, 4, 2167-2177
Appl. Phys. Lett. 2013, 102, 231603
Nano Lett. 2013, 13, 1793-1799
Phys. Chem. CP 2012, 15, 581-585
ACS Nano 2012, 6, 6569-6577
Recipient: R&D 100
Award 2012
Start-up Company in 2014
In vitro bacterial resistance

E. coli, 48 hours

S. aureus, 48 hours

P. aeruginosa, 7 days

Epstein and Aizenberg et al., PNAS 2012 109:13182-13187
Liquid as a Physical Barrier

Static

Dynamic

Side View

Top View

Advanced Healthcare Materials 2017, 1600948
Customizable Platform Technology

Solid Material:
- Plastics
 - PET
 - PS
 - PVC
 - ...
- Metals
 - Steel
 - Titanium
 - Aluminum
 - ...
- Rubbers
 - Silicone
 - Fluoroelastomers
 - EP
 - ...
- Other
 - Glass
 - Enamel
 - Hydrogels
 - ...

Surface Functionalization:
- Intrinsic
- Added

Surface Structure:
- Micro Scale
- Nano Scale
- Flat
- Infused

Liquids:
- Pharmaceutical Grade
 - Perfluorodecalin
 - Perfluoroperhydrophenanthrene
 - Silicone oils
 - Others…

Advanced Materials 2018, 30, 1802724
Biofilm Resistance Under Laminar Flow

P. aeruginosa

Untreated

Liquid Surface

ACS Biomat. Sci. Eng. 2015, 1, 43-51
Treatment of Foley Catheters

Silicone

<table>
<thead>
<tr>
<th>Length</th>
<th>Cross-Section</th>
<th>Additional Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Infusion</td>
<td>Before</td>
<td></td>
</tr>
<tr>
<td>After Infusion</td>
<td>After</td>
<td>$0.47</td>
</tr>
<tr>
<td>+22% Length</td>
<td>+24% ID</td>
<td></td>
</tr>
</tbody>
</table>

Silicone-Coated Latex

<table>
<thead>
<tr>
<th>Length</th>
<th>Cross-Section</th>
<th>Additional Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Infusion</td>
<td>Before</td>
<td></td>
</tr>
<tr>
<td>After Infusion</td>
<td>After</td>
<td>$0.02</td>
</tr>
<tr>
<td>+1% Length</td>
<td>+3% ID</td>
<td></td>
</tr>
</tbody>
</table>
Biofilms on Foley Catheters

P. aeruginosa

Liquid Surface

Untreated

Liquid Surface Untreated

Absorbance

- 24 hrs
- 48 hrs
- 168 hrs

p = 0.00

Liquid Surface

Untreated
Rethinking our approach: Physics Working for Us

3-Phase Contact

Chemistry of Materials 2015, 27, 1792-1800

Advanced Healthcare Materials 2017, 1600948
Spontaneous Biofilm Stripping

Coated Catheter Piece

Stain Biofilm

Liquid Surface

Biofilm
Rethinking our approach: Physics Working for Us

Diffusion

Surface liquid replenishment

ACS Appl. Mat. Int. 2014, 6, 13299-13307
Vascular systems for continuous resistance

ACS Appl. Mat. Int. 2014, 6, 13299-13307
Rethinking our approach: Physics Working for Us

Liquids as Solvents
Summary

• Bio-inspired slippery liquid surfaces

A *non-solid* paradigm shift in anti-biofouling materials and interfaces

• Resist bacterial adhesion

• Straightforward application to catheters

• Potential platform for new approach to anti-adhesive surfaces
Acknowledgements

Prof. Joanna Aizenberg

Prof. Don Ingber

Prof. Elliot Chaikof

Tak-Sing Wong
Alex Epstein
Ronn Friedlander
Noah MacCallum
Jenny Lin
Jack Alvarenga
James Weaver
Michael Aizenberg
Daniel Leslie
Anna Waterhouse
Mike Super
Julia Berthet
Thy Vu
Haylea Ledoux

Jiaxuan Chen
Carolyn Haller
Irini Sotiri
Susan Kelso
Jonathan Overton
Eugene Kovalenko
Steffi Sunny
Niki Vogel
Phil Kim, Scott Healy, Michael Lane

Funding: