WynnVision LLC

12 March 2019

NIH grant number 5R44DK103398-04

NIDDK

National Institute of Diabetes and Digestive and Kidney Diseases

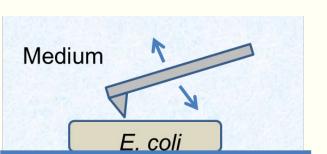
Outline

- Background: Imaging Escherichia coli cell disruption
- Challenge: translation of solution to a silicone catheter surface
- Progress: evidence for antimicrobial effectiveness with biocompatibility
- A pathway to FDA 510k clearance

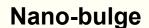
The Company

WynnVision

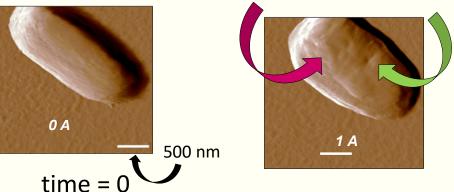
 Founded in 2016 by Kenneth J. Wynne Commonwealth Professor Chemical and Life Science Engineering Virginia Commonwealth University

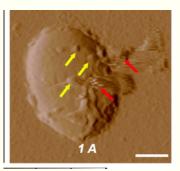

Virginia Bio+Tech Research Park 800 East Leigh Street, Suite 57 Richmond, VA 23219-1551

- Based on 20 years experience with antimicrobial technologies
- Mission: to generate ground breaking technologies for preventing infections from medical devices



Conceptual basis


- Learned about Nature's Antimicrobial Peptides "AMPs"
- Create a water soluble chain molecule that is an AMP-mimic
- Atomic Force Microscopy to image biocidal action



- AFM images of E. coli in (PBS)
- E. coli cell wall disruption
- Cell dies
- Osmotic pressure inside cell
- Cell disruption like a pin in a balloon

Nano-pit

time = > 1 h

Congzhou Wang, Olga Y. Zolotarskaya, Christopher J. Ehrhardt, Kenneth J. Wynne, Vamsi K Yadavalli, *Langmuir* **2016**, 32, 2975–2984,

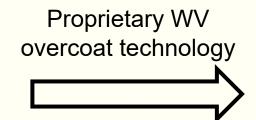
time = 1 h

How to translate from water soluble antimicrobial to antimicrobial surface?

- Basic AMP-likesolutionantimicrobials
- Fundamental
 knowledge about
 bacterial cell wall
 disruption

National Science Foundation, DMR

- Create a **surface** that disrupts bacterial cell walls **on contact**
- Solid state surface science
- Leap toward commercialization
- NIH NIDDK



Implementation:

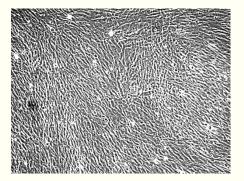
- A process for low cost overcoats on off-the-shelf silicone catheter segments
- "Simple is Good" for ready scaleup / manufacturing

Segments of a commercial, catheter with FDA clearance

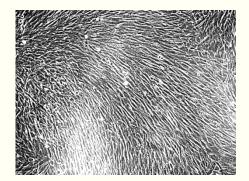
WV overcoated catheter

Outline

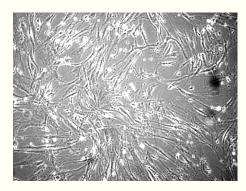
- ✓ Background: Imaging Escherichia coli cell disruption
- ✓ Challenge: translation of solution to a silicone catheter surface
- Progress: evidence for antimicrobial effectiveness with biocompatibility
- A pathway to FDA


Most frequent pathogens associated with HAI CAUTIS cited by a CDC panel

Time, 24 hr				
ASTM E2149 % kill	Kill	Gram stain	Strain	% HAI CAUTIs
99.999%	log 5	G(-)	Escherichia coli	21.4
99.999%	log 5	N/A	Candida albicans (spp)	21.0
		G(+)	Enterococcus spp	14.9
99.96%	log 3.4	G(-)	Pseudomonas aeruginosa	10.0
		G(-)	Klebsiella pneumoniae	7.7
99.999% Klebsiella aerogenes	Log 5	G(-)	Enterobacter spp	4.1
99.999% S. epidermidis methicillin resistant	Log 5	G(+)	Coagulase negative staphylococci (CoNS)	2.5
		G(+)	Staphylococcus aureus	2.2
		G(-)	Acinetobacter baumannii	1.2
		G(-)	Klebsiella oxytoca	0.9


WYNN VISION
Biocompatible Antimicrobials

ISO 10993-5 test for toxicity of any leachate to human cells


- Human Dermal Fibroblast (HDF)
- Photomicrographs of HDFs after 48 h growth in medium extracts

Untreated silicone tube

WV-overcoated silicone tube

Latex

Cell viability was0% for latex

Outline

- ✓ Background: Imaging Escherichia coli cell disruption
- ✓ Challenge: translation of solution to a silicone catheter surface
- ✓ Progress: evidence for antimicrobial effectiveness with biocompatibility
- A pathway to FDA clearance
 - ➤ In vivo tests: NAMSA
 - ➤ Biologics Consulting: seeking 510k

Acknowledgement

WynnVision Team

Kennard Brunson Ph. D., Chem. Eng.

Rebecca Jarell B.S., Chem. Eng.

Olga Zolotarskaya Ph.D., Chemistry

Chenyu Wang Ph.D., Chem. Eng

