

Proposed standard method for testing the efficacy of antimicrobial urinary catheters

Elinor deLancey Pulcini Assistant Research Professor Department of Chemical and Biological Engineering Montana State University

NIDDK CAUTI Technology Workshop| March 2019

Acknowledgements

Principal Investigator

Darla Goeres

BURROUGHS WELLCOME FUND

<u>Graduate Student</u> Jennifer Summers

Advisors and Collaborators

Phil Stewart Garth James Al Parker Paul Sturman Lisa Bowersock CDR K. Scott Phillips

Rabih Darouiche, MD

CAUTI Rates

- 2009-2014: CAUTI was the only HAI to not see a reduction in infection rates between
- 2015-2016: Nationally, acute care hospitals report decrease CAUTI rates ~7%

	States better than 2015 baseline	States worse than 2015 baseline
Acute Care Hospitals	22	5
Inpatient Rehab Facilities	2	8
Long Term Acute Care Hospitals	6	6

2016 National and State Healthcare-Associated Infections Progress Report

SHEA/IDSA

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY MAY 2014, VOL. 35, NO. 5

SHEA/IDSA PRACTICE RECOMMENDATION

Strategies to Prevent Catheter-Associated Urinary Tract Infections in Acute Care Hospitals: 2014 Update

- III. Approaches that should not be considered a routine part of CAUTI prevention
 - 1. Do not routinely use antimicrobial/antiseptic-impregnated catheters (quality of evidence: I).

I. High Highly confident that the true effect lies close to that of the estimated size and direction of the effect. Evidence is rated as high quality when there is a wide range of studies with no major limitations, there is little variation between studies, and the summary estimate has a narrow confidence interval.

Assess Biofilm Prevention

The goal of this project was to develop and validate a standard quantitative in vitro method that will assist FDA regulators in evaluating the efficacy of surface modified urinary catheters.

CDC Infection Criteria

- Patient had an indwelling urinary catheter that had been in place for <u>> 2 days</u>.
- 2. Patient has at least one of the following signs or symptoms.
 - Fever(>38° C)
 - Suprapubic tenderness
 - Urinary urgency
 - Urinary frequency
 - Dysuria
- Patient has a urine culture with <u>no more</u> than two species of organisms identified, at least one of which is a bacterium of <u>10⁵ CFU/ml</u>.

CAUTI Microorganisms – Top 5

January 2011-December 2014

	Percent of		
Pathogen	Pathogenic Isolates	Rank	
<u>Escherichia coli</u>	23.9	1	
Candida albicans	11.7	2	
Pseudomonas aeruginosa	10.3	3	
Klebsiella spp.	10.1	4	
Enterococcus faecalis	7.0	5	

Routes of Infection

In vitro Urinary Catheter Model

Patient Urinary Catheter

In vitro Urinary Catheter Model

The 7 R's for Standard Methods

- Reasonableness (expense, lab techniques)
- Relevance (lab outcome ~ field/clinical outcome)
- Repeatability (intra-laboratory, SDr)
- Resemblance (controls similar between experiments)
- Responsiveness (detect changes)
- Reproducibility (inter-laboratory, SDR)
- Ruggedness (unaffected by slight changes)

The 7 R's

- Reasonableness (expense, lab techniques)
- Relevance (lab outcome ~ field/clinical outcome)
- **Repeatability** (intra-laboratory, SD_r)
- Resemblance (controls similar between experiments)
- Responsiveness (detect changes)
- Reproducibility (inter-laboratory, SD_R)
- Ruggedness (unaffected by slight changes)

Intraluminal Catheter Model

- Escherichia coli ATCC 53498
- Artificial Urine Medium
- 16 French, silicone, 2 way Foley
- 0.75mL/min
- 37°C

Intraluminal Catheter Model

Day One:

- Run sterile AUM through catheter for 2 hours
- Inoculate catheter with 10³ CFU/mL of UPEC

Daily

- Collect Samples
 - Effluent
 - Catheter segment
- Disaggregate through vortex and sonication series
- Plate for viable cell counts

Catheter Segment Samples

Effluent Counts

Repeatability

Independent repeats of the same experiment in the same laboratory produce nearly the same response

Acceptable repeatability: SDr< 1.0

Repeatability

	Catheter Samples		Effluent Samples	
Time Point	Mean Log (CFU/cm²)	St Dev	MeanLog (CFU/ml)	St Dev
24	7.07	0.28	7.98	0.36
48	7.42	0.62	8.55	0.24
72	8.46	0.19	8.63	0.29
96	8.69	0.58	8.39	0.36

Control Catheter Samples CSDr = 0.79 Control Effluent Samples CSDr = 0.29

Ruggedness

A standard laboratory method is said to be rugged if the outcome is unaffected by slight departures from the protocol.

Statistical tool: *mixed effects* regression or ANOVA (e.g., repeated measures regression or ANOVA)

Operational Parameters

- Inoculum Concentration: 10², <u>10³</u>, 10⁴ CFU/mL
- Incubator Temperature: 34, <u>37</u>, 40 °C
- Flow Rate: 0.25, 0.75, 1.25 mL/min
- PH of AUM: 6, <u>6.5</u>, 7
- Biofilm Removal Technique: <u>Sonicate</u>, Scrape

Ruggedness

Run	Inoc (CFU/mL)	Temp (°C)	Flow (mL/min)	рН	Removal
1A	10 ⁴	34	0.25	7	sonicate
1B	10 ²	40	1.25	6	scrape
2A	10 ²	40	0.25	6	sonicate
2A	10 ⁴	34	1.25	7	scrape
3A	10 ²	40	1.25	7	scrape
3B	104	34	0.25	6	sonicate
4A	10 ²	34	1.25	7	sonicate
4A	104	40	0.25	6	scrape
5A	10 ²	34	0.25	7	scrape
5B	104	40	1.25	6	sonicate
6A	10 ²	34	0.25	6	scrape
6B	104	40	1.25	7	sonicate
7A	10 ²	40	0.25	7	sonicate
8B	104	34	1.25	6	scrape
9A	10 ²	34	1.25	6	sonicate
9B	104	40	0.25	7	scape

3 M C

Ruggedness

Control Catheter Samples, log(CFU/cm²)

Sample Points	Factor	Low pH, 6	High pH, 7
8 hours	Inoculum	0.69	0.93
	Temperature	<mark>0.08</mark>	<mark>-0.05</mark>
	Flow	<mark>0.13</mark>	0.54
24 hours	Inoculum	0.63	1.15
	Temperature	0.41	<mark>-0.07</mark>
	Flow	1.05	2.85
48 hours	Inoculum	0.45	1.19
	Temperature	<mark>0.23</mark>	-0.35
	Flow	1.09	3.37

Method is rugged with respect to parameter if effect is less than +/- 0.30 log

Rugged

- No standard for ruggedness has been set <u>+0.30</u>
- Ruggedness Testing
 - Never performed
 - Key for developing a method predictive of clinical outcomes

Changes to SOP

Scraping vs sonication Improved removal (increased plate counts) ■ pH Increased effect with time UPEC: pili expression

Changes to SOP

Connector may have been a source for bacteria
Higher SD in effluent compared to segment data

Conclusions

- Validated an Intraluminal Catheter Model (ICM)
- Increase ICM ruggedness
 - Optimization of AUM (pH)
 - Change biofilm harvesting
- Future
 - Test other relevant uropathogens
 - Develop and validate an extraluminal model

Reproducibility of antimicrobial test methods

albert.parker@montana.edu

Patient Catheter

