

Nephron Number and Function in Disease

John F Bertram

Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute Monash University Melbourne, Australia

> NIDDK Renal Imaging Workshop Bethesda July 2018

Human Nephrogenesis and Nephron Endowment at Birth

Nephrogenesis begins in week 9 of human gestation, and ends at approx. week 36.

Nephron endowment is set shortly before term birth, and therefore any deficit is permanent.

Strong correlation between increased birth weight and increased nephron number in adults – 230,000 more nephrons/kg birth weight (*Hughson et al. Kidney Int 2003*).

Children born preterm or small for gestational age have low nephron endowment and increased risk for adult hypertension and CKD (*Rodriguez et al. Ped Nephrol 2005; Abitbol and Rodriguez Nat Revs Nephrol 2012*).

Nephron endowment in children and nephron number in adults varies widely.

4.5-fold range in nephron number in 15 children <3mo

Nephron Number in Adults = Nephron Endowment Minus Nephron Loss <25 studies, mostly small samples, all require biopsy/autopsy tissue

Study Population	Clinical Kidney Disease Present	Technique	Mean Nephron No. per Kidney	Sample Size	Clinical Characteristics Associated with Low Nephron Number	Year of Publication
Autopsy series						
Traumatic accidents	no	Acid maceration	908,333	18	Age	1973 ⁴³
Autopsy cases	no	Acid maceration	1,309,280	32	Age	1977 ⁴⁴
Autopsy of full term infants	no	Acid maceration	1,107,000	28	Low birth weight, low vitamin A levels	1999 ²¹
Autopsy cases	no	Disector/fractionator	617,000	37	Age	19926
Traumatic accidents	yes	Disector/fractionator	702,379	10	Hypertension	2003 ⁸
	no		1,429,200	10	N/A	
Autopsy cases	no	Disector/fractionator	992,353	39	N/A	2010 ¹¹
Autopsy cases	no	Disector/fractionator	901,902	420	Age, low birth weight, short height, Australian Aboriginal race, hypertension	2010 ²²
Autopsy cases	some	MRI with cationized ferritin	1,236,667	3	N/A	2014 ³⁸
Living patients						
Stable renal transplants	some	MRI and protocol biopsy (Weibel–Gomez model)	730,000	39	Age, low GFR	200318
Older and younger kidney donors	no	Whole-kidney K _f	631,500	34	Age, low GFR	2010 ¹⁵
Healthy kidney donors	no	Whole-kidney K _f	641,730	19	Age	2015 ¹⁶
Normotensive and hypertensive kidney donors	no	Whole-kidney K _f	605,592	51	Age, hypertension	2015 ¹⁷
Healthy kidney donors	no	Renal CT angiogram and implantation biopsy (Weibel–Gomez model)	873,696	1638	Age ^a female sex, short height ^a family history of ESRD ^a high serum uric acid ^a and low GFR ^a	This study

Table 3. Estimated nephron number per kidney in adults across different studies

MRI, magnetic resonance imaging.

*Characteristic was an independent predictors of low nephron number in the study.

Large Range in Nephron Number in Normal Kidneys

	Population	N	Mean	Range	Fold-Variation
Nyengaard & Bendtsen <i>Anat Rec 1992</i>	Danish	37	617,000	331,000 - 1,424,000	4.3
Merlet-Bénichou et al. <i>Lab</i> Invest 1999	French	28	1,107,000	655,000 - 1,554,000	2.4
Keller et al. NEJM 2003	German normotensive	10	1,429,200	884,458 - 1,959,914	2.2
Bertram et al. <i>Ped</i> <i>Nephrol 2011</i>	Caucasian Americans	147	924,981	227,327 - 1,956,973	8.6
Bertram et al. <i>Ped</i> <i>Nephrol 2011</i>	African Americans	190	904,864	210,332 - 2,702,079	12.8
Hoy et al. <i>Kidney Int</i> 2006	Australian non- Aborigines	24	861,541	380,517 - 1,493,665	3.9
Hoy et al. <i>Kidney Int</i> 2006	Australian Aborigines	19	713,209	364,161 - 1,129,233	3.1
McNamara et al. <i>NDT 2008, NDT 2010</i>	Senegalese Africans	47	988,263	536,171 – 1,764,421	3.3
Kanzaki, Puelles et al. <i>JCI</i> Insight 2017	Japanese – normotensive	9	666,140	419,282 - 960,756	2.3

Human Nephron Number, Hypertension and Renal Pathophysiology

- Relatively few studies to date due to current need for kidney tissue (biopsy/autopsy)
- Most studies have relied on surrogate markers of nephron number
 - Low birth weight
 - High birth weight
 - Preterm birth
 - Being born small for gestational age
 - Reduced kidney volume on ultrasound
 - Enlarged glomeruli on kidney biopsy

Human Nephron Number and Hypertension

Ý

Kanzaki, Puelles et al. JCI Insight 2017

cko

0

\$

MONASH University

Nephron Number and Renal Pathophysiology

Low nephron number associated with increased glomerulosclerosis (Douglas-Denton et al. Ethnic Dis 2006; Hughson et al. Kidney Int 2006; McNamara et al. NDT 2008; Denic et al. JASN 2017)

Low nephron number associated with increased nephrosclerosis (Hughson et al. Kidney Int 2006; Denic et al. JASN 2017)

Low nephron number associated with low measured and estimated GFR and SNGFR (Fulladosa et al. JASN 2003; Tan et al. JASN 2009, Kidney Int 2010; Denic et al. JASN 2017; Kanzaki, Puelles et al. JCI Insight 2017)

Numerous studies showed birth weight inversely associated with microalbuminuria, decreased GFR, FSGS and ESKD.

Towards the Glomerular Size Distribution for a Whole Kidney

(US white males; 6 subjects/group, 30 gloms/subject - 1,440 gloms; Cavalieri)

Hoy et al. Clin Nephrol 2010

Why Estimate Glomerular Number and Size In Vivo?

Obtain a measure of functional nephron/glomerular mass.

Enable more accurate estimation of SNGFR.

Estimate functional nephron mass in patients newly-diagnosed with CKD – baseline value.

Determine the effectiveness of therapy in patients with CKD – progression rates, is nephron mass stabilised or decreasing? What is happening to SNGFR?

Count/size perfused (non-sclerosed) and non-perfused (sclerosed) glomeruli.

Better understand temporal relationships between decreasing nephron number and changes in blood pressure, GFR and pathology

In animal studies, perform longitudinal studies on effects of potential new therapies on glomerular number, size and SNGFR.

Estimate nephron number in children born small or premature and identify those to monitor closely (proteinuria, blood pressure). Detect problems early and treat accordingly.

Summary

Reports of human nephron (glomerular) number

- <25 studies to date we have a lot to learn
- Only approx. 10 racial groups studied to date
- Generally small samples
- All used kidney tissue

Nephron number

- Varies >10-fold in normal human kidneys some of this variation present at birth
- Is lower in premature and low birth weight babies
- Is lower in some racial groups than others
- Low nephron number is often associated with
 - hypertension
 - lower estimated and measured GFR
 - glomerulosclerosis, cortical fibrosis, nephrosclerosis

COLLABORATORS

Monash University

Ian Harper, Peter Kerr, Kate Denton

David Nikolic-Paterson, Roger Evans, Jane Black, Ian Smyth, Jose Polo

National/International

*Go Kanzaki, Nobuo Tsuboi, Takashi Yokoo, Akira Shimizu – Jikei University, Nippon Medical School

*Kevin Bennett – University of Hawaii Norbert Gretz – University of Heidelberg *Wendy Hoy – University of Queensland *Mike Hughson – University of Mississippi *Boucar Diouf – Hôpital Aristide Le Dantec Jeffrey Kopp, Cheryl Winkler – NIH NIDDK NHMRC* NIDDK* Australian Research Council Kidney Health Australia Colonial Foundation* Diabetes Australia Research Trust Monash University Janssen-Cilag Pty Ltd*

FUNDING

DOHaD 2019 October 20-23 Melbourne Australia

Investing in a healthy future for all Research...Education...Policy

DOHaD Society

International Society for Developmental Origins of Health and Disease

The **DOHaD** Society of Australia and New Zealand

Developmental Origins of Health and Disease

