Central Hub Webinar - September 12, 2016

1. KPMP Overview – Rob Star
2. KPMP Structure – Chris Ketchum
3. Central Hub Specifics – Tracy Rankin
4. Questions – KUH Staff

Please visit the KPMP website for full details and FAQs
https://www.niddk.nih.gov/research-funding/research-programs/Pages/kidneyprecisionmedicine.aspx
Or Google “NIDDK Kidney Precision Medicine Project”
Goals

- **Understand** human kidney disease
- Ethically **obtain** and **evaluate** human kidney biopsies from participants with AKI or CKD
- Find disease **subgroups** to **stratify** patients
- Find disease **pathways** in key **cells**
- Devise **individualized treatments**
- Improve scientific **knowledge** base
- Improve **pipeline**
Summary of Process

Obtain research kidney biopsy

Interrogate biopsy using visualization/omics/etc.

Curate and visualize data

Create Kidney Tissue Atlas
 – Phenotype critical compartments with ~40 RNA-protein-lipid-epigenetic markers
 – Identify cell, cell fate (healthy, injured, repair), activated pathways
 – Determine diagnosis, sub-group, prognosis

Ensure quality at every step
The NIDDK Kidney Precision Medicine Project aims to ethically obtain and evaluate human kidney biopsies from participants with AKI or CKD, create a kidney tissue atlas, define disease subgroups, and identify critical cells, pathways, and targets for novel therapies. It will have three distinct, but highly interactive activities.

Recruitment Sites (RS)
- **RFA-16-026** UG3/UH3 = 12 pages
 - About 4 awards to recruit either AKI or CKD patients for longitudinal cohort studies with research kidney biopsies
 - 2 year UG3 phase to establish common protocols and enroll small numbers of patients
 - 3 year UH3 phase to expand longitudinal cohort studies in initial AKI or CKD populations

Tissue Interrogation Sites (TIS)
- **RFA-16-027** UG3/UH3 = 12 pages
 - About 5 awards to support agnostic discovery on human kidney tissue
 - 2 year UG3 phase to use or adapt current “state-of-the-art” methods to interrogate existing samples and small numbers of biopsies; to develop and optimize “next generation” tissue interrogation methods
 - 3 year UH3 phase to implement next generation methods

Central Hub (CH)
- **RFA-16-028**
 - Multicomponent U2C (Overall = 6 pages; DCC = 12 pages; DVC = 12 pages; AC = 6 pages)

Data and sample Coordinating Center (DCC)
- Support clinical protocol development and statistical calculations
- Perform standard clinical assessments (e.g., patient data reports, recruitment tables)
- Collect, curate, aggregate, store, distribute, and ensure quality control of all data and samples

Data Visualization Center (DVC)
- Perform digital pathology
- Create a kidney tissue atlas to classify and locate different cell types and interstitial components in health and disease
- Develop and manage a website for internal and external communication, analysis, and discovery

Administrative Core (AC)
- Provide administrative and meeting support
- Establish working groups
- Solicit patient input and feedback
- Administer an Opportunity Pool to form new partnerships
Central Hub Specifics

• Utilizes the U2C mechanism---cooperative, multi-component, research resource program

• Request ~$1,700,000 direct costs per year for up to 5 years (excluding the Opportunity Pool)

• Three components
 – Data and Samples Coordinating Center (DCC)
 – Data Visualization Center (DVS)
 – Administrative Core (AC; including the Opportunity Pool and Patient Engagement WG)
Central Hub Eligibility

• Domestic institutions only
 – May include a foreign component
• Only one application for a CH per institution
• PI must commit a minimum of 2.4 CM (20%)
 – If a multi-PI, combined effort must meet this minimum
Logistics and budget

• Letter of intent appreciated, not required
• Use the Multi-Project instructions of the PHS 424 Application Guide
• Expect requests of about $1.7M direct costs (and an Opportunity Pool of about $1M) per year.
 – Request $15,000/year for sample shipping (DCC)
• Page limitations (36 pages total)
 – Overall, 6 pages
 – DCC, 12 pages
 – DVS, 12 pages
 – AC, 6 pages
Cooperative Responsibilities

• Resource and data sharing plans
 – Expectation that resources and data are broadly available in an open access format upon validation
 – Address long-term availability upon completion or termination

• Review Cooperative Agreement Terms and Conditions—become part of the NOA
 – Steering Committee, Project Scientists, Project Officers

• Oversight by an OSMB and an EEP

• Due December 6th, 2016
The NIDDK is seeking a Senior Scientific Advisor for the KPMP. This person will oversee working groups, initiate activities, provide advice on current and future precision medicine projects, manage multi-center clinical studies, and administer a portfolio of basic, translational, and clinical research grants that focus on precision medicine and genetics of AKI and CKD, including clinical diabetic nephropathy and glomerular disease.

Please contact Paul Kimmel for more information.
Upcoming Webinars

Recruitment Sites Webinar - September 14th, 11:00am – 12:00pm EST

Tissue Interrogation Sites Webinar - September 19th, 3:30pm – 4:30pm EST
Questions
Kidney Tissue Atlas: Pathology of the Future

Find tissue (cells, and interstitial areas between cells) markers to identify (paint) cells, structures, cell trajectory (healthy, injured, repair, regeneration), activated pathways
Understand heterogeneity between regions, neighboring cells
Even better, use 3D imaging to better see interstitium, glomerulus
The KPMP aims to ethically obtain and evaluate human kidney biopsies from participants with AKI or CKD, create a kidney tissue atlas, define disease subgroups, and identify critical cells, pathways and targets for novel therapies. It is anticipated that the KPMP will be conducted in stages:

Stage 1 (years 1-2)
- Optimize and validate tissue processing and interrogation methods
- Establish common clinical protocols and cohort studies enrolling a small number of AKI or CKD participants
- Assess quality of phenotype data and biopsy protocols at each site
- Begin work on kidney tissue atlas. Optimize next generation assays

Stage 2 (years 3-5)
- Small scale proof of concept studies to determine if clinical and analytic pipelines are robust
- Implement next generation tissue interrogation assays
- Enrich the kidney tissue atlas.
- Expand longitudinal cohort studies in initial AKI or CKD populations

Stage 3 (years 6+)
- Expand to larger cohort studies
- Expected to occur in the next 5 year funding cycle of the KPMP