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SUMMARY

The incidence of type 1 diabetes is increasing at an annual rate of 3%–5%, which suggests a major environmental exposure has changed, 
by either the gradual introduction of a susceptibility factor or the removal of a protective factor, during the past 60 or more years. 
Outbreaks and seasonality of type 1 diabetes may suggest an infectious cause, perhaps related to increasing sanitation and loss of herd 
immunity. Early childhood diet and environmental toxins are also of interest. 

Prospective studies following high-risk children from birth to development of the subclinical phase of the disease (islet autoimmunity) 
and diabetes have been the most reliable source of information regarding risk factors for type 1 diabetes. Prenatal and early post-
natal exposures appear to be critical, as the incidence of islet autoimmunity peaks in the second year of life. Among the infectious 
agents, enteroviral infections (particularly if they are persistent and acquired in early childhood) have gained most interest. Early leads 
suggesting the role of cow’s milk exposure in the initiation of islet autoimmunity have not been confirmed by large prospective studies 
and a large randomized clinical trial. While numerous studies have reported 1.5–2-fold increases in the risk of islet autoimmunity or 
type 1 diabetes with various components of early childhood diet and infectious exposures, none of the associations appears particularly 
strong or universal across different populations.

In the United States, 1 in 300 children and adolescents develop type 1 diabetes by age 20 years, but 1 in 40 offspring of mothers with 
type 1 diabetes and 1 in 15 offspring of fathers with type 1 diabetes develop type 1 diabetes. The disease is likely caused by the inter-
play of genetic and environmental factors. Systematic investigation of gene-environment interactions in large, prospectively followed 
cohorts of young children may help to identify and fully characterize modifiable risk factors and design trials to fully evaluate the stron-
gest candidate triggers of autoimmunity.

INTRODUCTION

The incidence of type 1 diabetes is 
increasing worldwide, by 3%–5% annually 
(1), with rates doubling every 20 years 
(2,3). The rising incidence, outbreaks (4), 
and a seasonal pattern (5) may suggest 
that infectious agents play a role in the 
pathogenesis. However, the incidence has 
been increasing since at least the 1950s 
(Figure 11.1) (2,3,6,7,8,9,10,11). Such a 
secular trend is unlikely to result from a 
new infectious agent; however, similar to 
the polio model (12), an “old” microbe 
could express its diabetogenic effect due 
to increasing hygiene and decreasing herd 
immunity. Changes in early childhood 
diet have also been implicated, as type 
1 diabetes has increased the most in the 
youngest children. Prospective studies 
(13,14,15) following high-risk children from 
birth have made important inroads into 
the understanding of the role of infectious 

FIGURE 11.1. Incidence of Type 1 Diabetes Per 100,000 Per Year in Children Age 0–14 Years, 
1950–2003
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Type 1 diabetes incidence is increasing 3%–5% per year and has doubled every 20 years.

SOURCE: Reference 11. Data for Finland are from the Finnish National Public Health Institute (3); data for Sweden 
are from the Swedish Childhood Diabetes Registry (6); data for Colorado are from the Colorado IDDM Registry, 
the Barbara Davis Center for Childhood Diabetes, and SEARCH for Diabetes in Youth (2,7); data for Germany are a 
compilation of two reports (8,9); data for Poland are from seven regional registries (10).
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and dietary factors in type 1 diabetes. 
Prospective studies have defined two 
major steps in the pathogenesis of type 
1 diabetes (Figure 11.2). Seroconversion 
to positivity for one or more islet auto-
antibodies (to insulin, glutamic acid 
decarboxylase [GAD], insulinoma antigen 
2 [IA-2], or zinc transporter 8 [ZnT8]) 
marks the development of islet autoim-
munity. Approximately 70% of children 
positive for two or more of these auto-
antibodies develop diabetes in 10 years 
following the appearance of the first auto-
antibody (16). In contrast, most children 
persistently positive for only one islet auto-
antibody do not progress to diabetes (16). 
Data suggest that a variety of exposures 
may trigger islet autoimmunity, promote 
progression to clinical diabetes, or affect 
both of these steps. 

Most of the existing data concerning risk 
factors for islet autoimmunity and type 
1 diabetes have come from a handful of 
prospective studies that have sometimes 
generated inconsistent results. While the 
large international prospective cohort 
study (The Environmental Determinants of 

Diabetes in the Young [TEDDY]) will likely 
reconcile some of the inconsistencies, 
randomized clinical trials of risk factor 
modifications will provide the ultimate test.

Type 1 diabetes is caused by the interplay 
of genetic and environmental factors. 
The genetics of type 1 diabetes is 

reviewed in depth in Chapter 12 Genetics 
of Type 1 Diabetes and only briefly 
summarized in the following section. 
In this chapter, infectious, dietary, and 
other environmental factors are reviewed 
in detail, as well as potential gene-envi-
ronment interactions in type 1 diabetes 
etiology.

FIGURE 11.2. Two-Step Model of Type 1 Diabetes Development and Potential Role of 
Environmental Factors
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GAD, glutamic acid decarboxylase; IA-2, insulinoma antigen 2; ZnT8, zinc transporter 8.

SOURCE: Original figure constructed by M. Rewers.

GENETIC FACTORS 

FAMILY HISTORY OF 
TYPE 1 DIABETES
In the United States, approximately 1 in 
300 children and adolescents develop 
type 1 diabetes by age 20 years (Table 
11.1) (2,17). The risk is increased to about 
1 in 40 in offspring of mothers with type 1 
diabetes and 1 in 15 in offspring of fathers 
affected by type 1 diabetes; the reason 
for this difference may have an epigen-
etic origin. The risk to siblings of type 1 
diabetes individuals ranges from 1 in 12 
to 1 in 35 (18,19). The risk is significantly 
higher in siblings of individuals diagnosed 
at age <7 years than in those diagnosed 
later (20). It is as high as 1 in 3 among 
monozygotic twins (21). In parents of indi-
viduals with type 1 diabetes, the risk by 
age 40 years is 2.6% and twofold higher 
in fathers (3.6%) than in mothers (1.7%) 
(20). By age 60 years, an estimated 10% 
of first degree relatives will develop type 
1 diabetes (22). However, the “familial” 
cases account for less than 10% of type 

1 diabetes in the general population; they 
do not differ from “sporadic” cases in 
terms of the human leukocyte antigen 
(HLA)-DR,DQ gene frequencies or the 
prevalence of islet autoantibodies (23). 

TABLE 11.1.

Similar to type 1 diabetes, the risk of 
developing islet autoimmunity varies 
depending on which relative has type 1 

diabetes (Table 11.1). Siblings of type 1 
diabetes patients develop islet autoim-
munity more frequently than offspring or 
parents of type 1 diabetes patients (24). 
The risk of islet autoimmunity is markedly 
increased if both parents or a parent and 
a sibling have type 1 diabetes compared 
with a single affected family member (25). 

 Cumulative Incidence, by Age 20 Years, of Type 1 Diabetes and Persistent Islet 
Autoimmunity in the General U.S. Population and Family Members of Type 1 Diabetes Patients

TYPE 1 DIABETES ISLET AUTOIMMUNITY

General population 1:300 1:100

Family members

Maternal offspring 1:40 1:15

Paternal offspring 1:15 1:5

Siblings (all) 1:12–1:35 1:7

HLA-identical sibling 1:4 1:2

Monozygotic twins 1:3 1:1

HLA, human leukocyte antigen.

SOURCE: References 17, 18, 19, 20, 21, 22, and 23
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CANDIDATE GENES

TABLE 11.2. Proportion of Type 1 Diabetes Subjects With High-Risk HLA Genotypes

POPULATION (REF.)

PERCENT (YEARS COVERED)

P-VALUEBefore 1975 1975–1999 2000 or Later

United States (BDC) (39) 38% (1965–1974) 37% (1975–1984) 31% (1985–1994) 26% (1995–2008) 0.02

United States (40) 41% (1978–1988) 28% (2002–2004) 0.05

T1DGC (39) 49% (1965–1974) 45% (1975–1984) 39% (1985–1994) 35% (1995–2008) <0.0001

Finland (35) 25% (1939–1965) 18% (1990–2001) 0.007

Australia (36) 79% (1950–1969) 60% (1970–1979) 47% (1980–1989) 37% (1990–1999) 28% (2000–2005) <0.0001

Sweden (37) 36% (1986–1987) 37% (1996–2000) 19% (2003–2005) <0.0001

Italy (38) 23% (1980–1989) 21% (1990–1999) 27% (2000–2012) NS

United Kingdom (41) 47% (1922–1946)* 35% (1985–2002)

High-risk HLA genotypes are defined as DR3-DQ2/DR4-DQ8 (Ref. 41), (DR3)-DQA1*05-DQB1*02/ DRB1*0401-DQB1*0302 (Ref. 35), DRB1*03-DQB1*0201/DRB1*04-DQB1*0302 
(Ref. 38), DR3-DQB1*0201/DR4-DQB1*0302 (Ref. 39), DRB1*03-DQB1*02/DRB1*04-DQB1*03 (Ref. 40), DR3/4 (Ref. 36), HLA DQA1*-B1*genotype 0501-0201/0301-0302 
(Ref. 37). BDC, Barbara Davis Center for Diabetes; HLA, human leukocyte antigen; NS, nonsignificant; T1DGC, Type 1 Diabetes Genetics Consortium. 
* Must have survived 50 years with type 1 diabetes to be tested.

SOURCE: References are listed within the table.

The increased risk seen in family members 
can be attributed to both shared genes 
and shared environment. The strongest 
genetic association for type 1 diabetes 
is with certain alleles of the HLA class II 
genes (odds ratio [OR] >6). An estimated 
30%–50% of the genetic risk for type 
1 diabetes is attributable to the HLA 
region (26). More than 50 confirmed 
non-HLA loci, found via candidate gene 
and genome-wide association studies 
(GWAS), confer the remaining genetic 
risk, each with modest to small effects 
(27,28,29,30,31,32). Non-HLA loci most 
strongly associated with type 1 diabetes 
include INS (33) and PTPN22 (34), both 
with an odds ratio of approximately 2. 
One reason why these genes seem to 
have relatively small effects is that they 
may need to work in concert with another 
factor, such as an environmental exposure 
(gene-environment interaction), which is 

covered later in this chapter. The non-HLA 
gene variants studied more thoroughly so 
far appear important to both the triggering 
of islet autoimmunity and to the progres-
sion to clinical disease; however, most 
studies are underpowered to tease out 
this distinction. (See Chapter 12 for more 
details on type 1 diabetes genetics.)

INCREASING PENETRANCE OF THE 
MODERATE-RISK HLA GENOTYPES 
Seven studies (35,36,37,38,39,40,41) 
have explored temporal changes in the 
frequency and/or distribution of HLA 
genotypes associated with type 1 diabetes 
susceptibility. All but one have suggested 
a decreasing frequency of the highest-
risk HLA-DR,DQ genotype over time in 
individuals diagnosed with type 1 diabetes 
(Table 11.2) (35,36,37,38,39,40,41). 
A study conducted in Finland reported 
a significant decrease in the frequency 
of the HLA-DRB1*03-DQB1*0201/

DRB1*04-DQB1*0302 genotype from 
25.3% to 18.2% over a 62-year time period 
(35). A similar decrease in the frequency of 
the highest-risk HLA genotypes (from 47% 
to 35% over a 50-year time period) was 
noted in the United Kingdom (41). A study 
combining the Type 1 Diabetes Genetics 
Consortium participants and a Colorado 
clinic population cohort (39) showed 
a similar linear decrease. Additional 
evidence for decreasing frequency of the 
highest-risk genotype was published from 
Colorado (40), Sweden (37), and Australia 
(36). The decrease in the frequency of 
cases with the highest-risk HLA genotype 
with the corresponding increase in 
moderate and lower risk genotypes 
suggests an increasing penetrance of 
moderate and lower risk HLA genotypes 
that could be explained by increasing 
environmental pressure, e.g., higher levels 
of exposure to the critical factor.

INFECTIOUS AGENTS

Prospective studies of high-risk children 
have shown that the incidence of islet 
autoimmunity peaks in the second year of 
life (42,43,44), suggesting that the puta-
tive environmental trigger(s) must occur 
very early in life in many cases. Therefore, 
in utero, perinatal, or early childhood 
infections and infant diet are likely candi-
date exposures. 

SEASONALITY OF TYPE 1 
DIABETES DIAGNOSIS, ISLET 
AUTOANTIBODIES, AND BIRTH
Type 1 diabetes incidence in children is 
higher in autumn-winter and lower in 
spring-summer in both hemispheres, 
resembling seasonality of viral infections 
(7,45,46). However, children age 11–15 
years show more obvious seasonal vari-
ation compared to children diagnosed 
before age 5 years (47), which may 

suggest that additional factors may play 
a role, e.g., easier detection of the onset 
of diabetic signs/symptoms in children 
attending school. Development of islet 
autoimmunity could also depend on an 
environmental exposure during preg-
nancy as suggested by seasonality of islet 
autoantibodies in cord blood (48) and 
seasonal distribution of birth dates of 
type 1 diabetes patients in some popula-
tions (49,50).
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VIRAL INFECTIONS
Viral infections have long been impli-
cated in the etiology of type 1 diabetes, 
but a definitive proof has been elusive. 
Footprints of infectious triggers of islet 
autoimmunity may be hard to detect 
due to a long incubation period of type 
1 diabetes in most cases. A number of 
agents have been suggested to trigger 
autoimmune diabetes; the strongest leads 
are reviewed in this section.

Enteroviruses have shown associations 
with type 1 diabetes in both animal and 
human studies (51,52). These viruses have 
a tropism to human pancreatic islets in 
vivo and in vitro (53,54,55), and they have 
been detected in the pancreata of type 
1 diabetes patients (56). Animal studies 
suggest that the timing of an infection 
may be critical. The outcome of infection 
may differ in individuals with islet autoim-
munity compared to those with unaffected 
islets. The outcome is also modulated 
by complex interactions between the 
microbe and the host, e.g., variants of the 
innate immune system receptor interfer-
on-induced helicase C domain-containing 
protein 1 (IFIH1) may determine viral load 
(57). Despite a number of studies using 
different approaches, the nature of the 
relationship between enteroviruses and 
type 1 diabetes remains controversial. In 
most cases, diagnosis of type 1 diabetes 
follows a long period of preclinical islet 
autoimmunity. Viruses present at diag-
nosis may have infected the host late in 
the disease process rather than trigger the 
process. Alternatively, the triggering infec-
tion has likely been cleared by the time 
of diagnosis, unless the virus is able to 
persist. Enterovirus infections may poten-
tially initiate islet autoimmunity, modulate 
progression to clinical type 1 diabetes 
(58,59,60,61,62), or both (Figure 11.2).

CASE-CONTROL STUDIES OF 
ENTEROVIRAL INFECTIONS AT THE 
DIAGNOSIS OF TYPE 1 DIABETES
Enterovirus Serology 
The initial observation of an association 
between enteroviral infections and 
type 1 diabetes made by Gamble et al. 
in 1969 (63) was based on apparently 
higher prevalence of antibodies against 

Coxsackie virus in patients with recently 
diagnosed type 1 diabetes than in 
controls. Controls were poorly selected, 
older than the cases, thus less likely to 
have had a recent infection. That study 
did not adjust for likely differences in 
the HLA genotypes among cases and 
controls. The HLA genotypes associated 
with type 1 diabetes are a powerful 
confounder, as they are also associ-
ated with a more vigorous antibody 
response to infection than the other 
genotypes (64,65). However, none of 
the 13 studies published up to 2002 
(66) determined HLA type in cases and 
controls. This has helped to reinforce the 
possibly false-positive initial finding by 
Gamble. The review by Green et al. (66) 
concluded that heterogeneity in assays, 
study design, and results did not allow 
a conclusion or calculation of a pooled 
estimate. Smaller studies included in that 
review had larger estimated odds ratios, 
suggestive of a publication bias (66). 
Separate analyses performed for anti-
bodies specific for Coxsackie viruses B3, 
4, and 5 (based on 11, 17, and 11 studies, 
respectively) revealed little or no asso-
ciation overall. Most of the limitations 
plaguing the early seroepidemiologic 
studies apply also to more recent studies 
using reverse transcription-polymerase 
chain reaction (RT-PCR) for enterovirus 
detection, covered in the next section. 

Enterovirus RNA in Blood Samples 
Yeung et al. reviewed studies using 
modern methods of enterovirus detection 
(67). This meta-analysis unfortunately 
pooled estimates across all studies 
despite the presence of significant hetero-
geneity in the study designs and results 
(68). For instance, methods of detection 
included in situ hybridization or immuno-
histochemistry on pancreatic tissue, as 
well as RT-PCR on blood samples.

A less heterogeneous re-analysis of 
RT-PCR studies utilizing serum, plasma, 
or whole blood among newly diagnosed 
type 1 diabetes patients and matched 
controls is presented in Figure 11.3 (52). 
The overall results were consistent with 
an odds ratio of approximately 10 (Figure 
11.3A) (69,70,71,72,73,74,75,76) and 

low heterogeneity among the studies 
(the I-square estimate was 0%). While 
the studies varied little in the frequency 
of enterovirus RNA in healthy controls 
(Figure 11.3B) (69,70,71,72,73,74,75,76), 
there was wide variation in the frequency 
of enterovirus RNA in newly diagnosed 
type 1 diabetes patients (Figure 11.3C) 
(62,69,70,71,72,73,74,75,76,77,78). 
The earliest studies showed a higher 
frequency of infection among patients 
than did the more recent ones. It is 
notable (Figure 11.3C) that one labora-
tory found no enterovirus RNA in any 
sample from type 1 diabetes patients at 
diagnosis in three independent data sets 
(62,77,78). This was the Finnish laboratory 
that has reported many positive samples 
from prediabetic individuals in longitu-
dinal studies (62,78). Thus, lack of assay 
sensitivity would be unlikely. A large study 
reported a three times higher proportion 
of enterovirus RNA in serum from type 1 
diabetes patients compared to controls, 
but interestingly, the majority of patients 
had longstanding diabetes (79).

PROSPECTIVE COHORT 
STUDIES OF ENTEROVIRUSES 
AND ISLET AUTOIMMUNITY
Prospective studies can exclude the possi-
bility that the virus detected in patients 
infected them after disease onset. They 
can also demonstrate causation if a virus 
triggers autoimmunity through a “hit and 
run” mechanism. Challenges include 
sampling frequency to capture infectious 
agents while they are present in biological 
specimens and statistical power if the 
infection is rare or very common. 

Does Enterovirus Trigger 
Islet Autoimmunity?
The longitudinal studies investigating 
enteroviral infections as potential triggers 
of islet autoimmunity are presented in 
Table 11.3 (15,62,64,77,78,80,81,82,
83,84,85,86,87, reviewed in 52). The 
largest studies include three Finnish 
projects: DIPP (Diabetes Prediction and 
Prevention Study), DiMe (Childhood 
Diabetes in Finland), and TRIGR (Trial to 
Reduce IDDM in the Genetically at Risk); 
the Colorado DAISY study (Diabetes 
Autoimmunity Study in the Young); the 
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FIGURE 11.3. Studies of Enterovirus RNA in Serum or Plasma From Patients With Type 1 
Diabetes Diagnosed Within One Month and From Healthy Controls
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Note that three studies of patients with newly diagnosed type 1 diabetes did not include matched controls and 
are thus not included in panels A and B. (A) Odds ratio for association between enterovirus and type 1 diabetes 
estimated using Woolf’s formula, as information for matched analysis was not provided in original publications. 
The I-squared estimate of statistical between-study heterogeneity was 0.0%. Odds ratio estimates cannot be 
calculated from studies with zero observed controls with enterovirus. Overall results (association and heterogeneity) 
were similar after adding 0.5 to all four cells in the 2x2 table for studies with zero observed controls with enterovirus 
RNA positive serum (data not shown). (B) Percent enterovirus-positive age-matched healthy controls (with exact 
95% confidence intervals). (C) Percent enterovirus-positive type 1 diabetes patients. CI, confidence interval; EV, 
enterovirus.

SOURCE: Reference 52, copyright © 2012  John Wiley & Sons, reprinted with permission,  and references cited 
(first author and publication year indicated in figure) are 62, 69, 70, 71, 72, 73, 74, 75, 76, 77, and 78. Data from 
Oikarinen 2011 (78) include data not presented in original publication, obtained by personal communication from 
H. Hyöty and S. Oikarinen, Tampere, Finland. Figure does not include data based on enterovirus detection in periph-
eral blood mononuclear cells, which are available from Schulte et al. (76). 

Norwegian MIDIA (Environmental Triggers 
of Type 1 Diabetes); and the German 
BABYDIAB and BABYDIET studies. 
Preliminary data from a study in Australia 
called VIGR (Viral etiology of type 1 
diabetes) have only been presented 
in abstract form, but the results were 
included in the meta-analysis by Yeung 
et al. (67) (Table 11.3). These studies 
followed children with increased risk 
of type 1 diabetes, defined by a first 
degree family history, HLA susceptibility 
genes, or both, with serial tests of serum 
or stools for evidence of enterovirus 
infections. These seven studies have 
published data from a total of 176 cases 
of islet autoimmunity; DiMe followed 
only children with islet autoimmunity for 
type 1 diabetes as the endpoint. Sample 
frequency and method of virus detection 
varied. Results of the prospective studies 
were reviewed by Stene and Rewers 
(52) and are summarized in Table 11.4 
(64,67,80,83,84,85,86,87).

Presence of Enteroviral RNA in 
Stool. Three studies (DIPP, MIDIA, and 
BABYDIET) reported separate data from 
stool samples; none showed any signifi-
cant association with islet autoimmunity 
(85,86,87). In MIDIA, the lack of asso-
ciation remained also when restricting 
to periods just prior to seroconversion, 
and there was also no difference when 
counting samples after seroconversion 
for islet autoantibodies (87). In DIPP, there 
was a tendency towards an association, 
but the result was only significant when 
combined with enterovirus serology (85). 
In the BABYDIET study, some infections 
may have been missed because of 
sampling every 3 months rather than 
monthly and only up to age 12 months, 
while most cases seroconverted to islet 
autoimmunity at a later age (mean 2.6 
years, up to 7.9 years) (86). 

Presence of Enteroviral RNA or 
Antibodies in Serum. DIPP and TRIGR 
reported significant associations with islet 
autoimmunity when combining enterovirus 
RNA in serum with infections defined sero-
logically based on serial increase in at least 
one of several assays. The fact that the 
large majority of infections were detected 
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TABLE 11.3. Longitudinal Studies of Enterovirus and Islet Autoimmunity or Type 1 Diabetes

STUDY, YEARS (REF.) POPULATION
AGE (MONTHS) AT 

SAMPLE COLLECTION

DEFINITION OF ISLET 
AUTOIMMUNITY; 

NUMBER OF CASES 
TESTED FOR ENTEROVIRUS

TYPE OF SAMPLE AND 
ENTEROVIRUS ASSAY 

DiMe, 1986–1993 (77,81) Siblings of newly diagnosed children 
with type 1 diabetes in Finland

6 month intervals from type 1 
diabetes diagnosis in sibling

≥1 of ICA, IAA, GADA, IA2A; 
11 cases

Serum, serology, and RT-PCR

DIPP, 1994–2003 
(15,78,82,83,84,85)

Newborns with moderate- or 
high-risk HLA genes in Finland

Cord, (3), 6, (9), 12, (15), 18, 
(21), 24, (30), 36, … 
( ) denotes samples in high-risk 
HLA subjects only

ICA (IAA, GADA, IA2A 
measured if ICA positive); 
up to 41 cases

Serum (plus fecal samples), 
serology, and RT-PCR

Second pilot of TRIGR, 
1995–1999 (83)

Newborns with family history of 
type 1 diabetes in Finland

Cord, 3, 6, 9, 12, 18, 24 ≥1 of IAA, GADA, IA2A, ICA;
19 cases

Serum, serology, and RT-PCR

BABYDIAB, 1989–1997 
(80)

Offspring of patients with type 1 
diabetes in Germany

Cord, 9, 24, 36, 60, 96 ≥1 of IAA, GADA, IA2A, ICA;
28 cases

Serum, Coxsackie virus 
serology

DAISY, 1993–ongoing 
(64)

Relatives of type 1 diabetes and 
newborns with moderate- or 
high-risk HLA genes in Colorado

9, 12, 15, 24, then annually ≥1 of IAA, GADA, IA2A on 
≥2 consecutive occasions;
up to 26 cases

Serum, rectal swabs, saliva, 
RT-PCR 

DAISY, 1993–ongoing 
(62)

As above 3–6 month intervals from islet 
autoimmunity

140 cases of islet 
autoimmunity tested, of which 
up to 50 progressed to type 1 
diabetes

Serum, rectal swabs, RT-PCR 
(serology in subsample)

MIDIA, 2001–2006 (87) Newborns with the high-risk HLA 
genes in Norway 

Every month from ages 3 to 36 
months

≥2 of IAA, GADA, IA2A on 
≥2 consecutive occasions;
27 cases 

Fecal samples, RT-PCR

BABYDIET, 2000–2006 
(86)

Relatives of type 1 diabetes and 
newborns with moderate- or high- 
risk HLA genes in Germany

3, 6, 9, 12 months ≥1 of IAA, GADA, IA2A, 
Zn-T8A;
22 cases

Fecal samples, RT-PCR, cell 
culture

Systematic review through 
2010 (67)

Newborns with family history of 
type 1 diabetes in Australia

Every 6 months from ages 6 to 
30 months

≥2 of IAA, GADA, IA2A;
13 cases

Serum, RT-PCR

DAISY, Diabetes Autoimmunity Study in the Young; DiMe, Childhood Diabetes in Finland Study; DIPP, Diabetes Prediction and Prevention Study; GADA, glutamic acid decarbox-
ylase autoantibodies; HLA, human leukocyte antigen; IA2A, insulinoma antigen 2 autoantibodies; IAA, insulin autoantibody; ICA, islet cell autoantibodies; MIDIA, Environmental 
Triggers of Type 1 Diabetes Study; RT-PCR, reverse transcription-polymerase chain reaction; TRIGR, Trial to Reduce IDDM in the Genetically at Risk; ZnT8A, zinc transporter 8 
autoantibody.

SOURCE: References are listed within the table.

with serology suggests that serology 
was driving this association (82,84). 
Another DIPP report (88) found no signif-
icant association between serologically 
defined infections in serial samples from 
age 3–24 months and later risk of islet 
autoimmunity in 107 children with islet 
autoimmunity and 446 matched controls. 
BABYDIAB analyzed enterovirus serology 
(80), but infrequent sampling and, in many 
instances, only one or no sample available 
from before islet autoimmunity limited the 
power to detect any relationship. Graves 
et al. (64) in DAISY found no significant 
serologic association between entero-
virus and islet autoimmunity (M. Rewers, 
unpublished observation). Notably, 
these longitudinal studies rarely, if ever, 
detected enterovirus RNA continuously in 
the same individual for more than about 
3 months, thus providing no evidence for 
detectable persistent infection. 

Does Enterovirus Influence 
Progression From Islet 
Autoimmunity to Type 1 Diabetes?
DiMe and DIPP have found that 
positive enterovirus RNA and 
serology preceded development 
of type 1 diabetes (77,78,81). The 
hypothesis that enterovirus infections 
can promote progression from islet 
autoimmunity to type 1 diabetes is 
consistent with animal model data 
(58,89). Among children with islet 
autoimmunity, DAISY was the first to 
report a higher rate of progression to 
type 1 diabetes in sample intervals 
after detection of enterovirus RNA in 
serum (62). Remarkably, none of the 
samples available from the day of type 
1 diabetes diagnosis was positive for 
enterovirus RNA. This suggests that the 
observed association was not due to 
reverse causality.

PRENATAL ENTEROVIRUS 
INFECTION AND DEVELOPMENT 
OF TYPE 1 DIABETES 
Some studies have suggested a rela-
tionship between prenatal infections 
and risk of type 1 diabetes in childhood 
(81,90,91,92), while a number of others 
have not found any significant relationship 
(80,83,84,93). There are many method-
ologic differences between these studies, 
including timing of exposure assessment 
(the first trimester, third trimester, or birth). 

THE POLIO MODEL OF 
TYPE 1 DIABETES
The analogy between the epidemiology 
of poliomyelitis and that of type 1 diabetes 
was pointed out a long time ago (94). 
Poliovirus and enteroviruses belong to 
the same family of Picornaviridae. Prior 
to 1880, most infants were infected 
with poliovirus during the first year 



Risk Factors for Type 1 Diabetes

11–7

TABLE 11.4. Postnatal Enterovirus Infections Before Islet Autoimmunity and the 
Corresponding Period for Matched Controls From Longitudinal Birth Cohort Studies

TYPE OF ENTEROVIRUS 
ASSAY/SAMPLE, STUDY, 

YEARS (REF.)

PER SAMPLE RESULTS PER SUBJECT RESULTS

EV+ Case Samples Versus 
EV+ Control Samples 
Odds Ratio (95% CI)

Case Subjects EV+ at Least  
Once Versus Controls  
Odds Ratio (95% CI)

RNA in feces

DIPP, 1994–1999 (85) NR 5/12 (42%) vs. 15/53 (28%)
OR 1.8 (0.5–6.6)

MIDIA, 2001–2006 (87) 43/339 (13%) vs. 94/692 (14%)
OR 1.0 (0.6–1.7)

18/27 (67%) vs. 30/53 (57%)
OR 1.5 (0.6–4.0)

BABYDIET, 2000–2006 (86) 5/72 (7%) vs. 27/267 (10%)
OR 0.7 (0.2–2.2)

4/22 (18%) vs. 20/82 (24%)
OR 0.7 (0.2–2.3)

RNA in serum

DIPP, 1994–1999 (84) NR NR

TRIGR, 1995–1999 (83) NR (14%) vs. NR (8.4%)
OR 1.8 (NR)

NR

Systematic review through 2010 
(67)

NR 5/13 (38%) vs. 28/198 (14%) 
OR 3.8 (1.2–12)

Serology

BABYDIAB, 1989–1997 (80) 0/62 (0%) vs. NR 0/28 (0%) vs. NR

Combination of methods

Serology and/or serum RNA; 
DIPP, 1994–1999 (84)

33/152 (22%) vs. 105/751 (14%)
OR 1.7 (1.1–2.6)

NR

Serology and/or serum RNA; 
TRIGR, 1995–1999 (83)

NR (0.83 vs. 0.29 
infections per child 

reported significantly different)

NR

RNA in rectal swab or saliva; 
DAISY (64)

0/17 (0%) vs. 3/35 (9%) 0/10 (0%) vs. 3/21 (14%)

EV RNA in serum, rectal swab, or 
saliva; DAISY (relatives) (1993–
ongoing) (64)

1/10 (10%) vs. 2/8 (25%)
OR 0.3 (0.02–4.6)

1/6 (17%) vs. 2/6 (33%)
OR 0.4 (0.03–6.2)

CI, confidence interval; DAISY, Diabetes Autoimmunity Study in the Young; DiMe, Childhood Diabetes in Finland 
Study; DIPP, Diabetes Prediction and Prevention Study; MIDIA, Environmental Triggers of Type 1 Diabetes Study; 
NR, not reported; OR, odds ratio; RNA, ribonucleic acid; TRIGR, Trial to Reduce IDDM in the Genetically at Risk.

SOURCE: References are listed within the table.

of life (12). These infections were generally 
mild due to the presence of maternal 
anti-poliovirus antibodies transmitted 
transplacentally or in breast milk (95). 
Viremia was limited, and infection of the 
central nervous system and paralysis were 
rare. Importantly, infants acquired active 
immunity under the cover of passive 
protection. Improved hygiene led to a 
delay of the initial infections past the 
passive protection period. The median 
age at poliovirus infection increased 
gradually with associated morbidity until 
widespread vaccination became available. 

It has been hypothesized that in 
countries with the highest incidence 
of type 1 diabetes, increased hygiene 
and sanitation resulted in a decline in 

herd immunity to enteroviruses among 
pregnant women, exposing fetuses and 
newborns to prenatal or infant enteroviral 
infections (96). While direct evidence for 
this in humans is lacking, virus-induced 
diabetes can be prevented in animal 
models of offspring by infecting mothers 
with the same virus prior to pregnancy 
(97). There are, however, important 
differences between the epidemiology 
of poliomyelitis and type 1 diabetes. 
In contrast to polio, the age at diagnosis 
of type 1 diabetes has been declining 
with the increase in incidence. It could 
potentially be explained by an increase 
in the proportion of type 1 diabetes 
caused by prenatal enteroviral infections 
resulting in viral persistence in the 
pancreas (56,98). 

THE HYGIENE HYPOTHESIS AND 
POTENTIAL PROTECTIVE EFFECT 
OF NATURAL INFECTIONS
The hygiene hypothesis suggests that 
autoimmune diseases may be on the rise 
due to a decreasing frequency of child-
hood infections from improved hygiene 
(99,100,101). Children living with siblings 
and sharing a bedroom have lower risk 
of type 1 diabetes (102). Infections in 
early life, routinely recorded by family 
doctors, have not been associated with 
subsequent childhood type 1 diabetes in a 
U.K. population-based study of 367 cases 
and 4,579 matched controls (103). There 
was no evidence of any reduction in the 
subsequent risk of diabetes in children 
with at least one infection in the first year 
of life (OR 1.03, 95% confidence interval 
[CI] 0.79–1.34) or in children prescribed 
antibiotics in the first year of life (OR 1.03, 
95% CI 0.82–1.29). Analyses of infections 
in the first 2 years of life reached similar 
conclusions. However, prospective studies 
have reported a significant association 
between early childhood infections and 
islet autoimmunity. The BABYDIET study 
found respiratory infections during the 
first 6 months of life predictive of islet 
autoimmunity (hazard ratio [HR] 2.27, 95% 
CI 1.32–3.91); the association was weaker 
for infections between ages 6 and 12 
months (HR 1.32, 95% CI 1.08–1.61) and 
absent beyond 1 year of age (104). Similar 
results were reported from Norway (105), 
while the DAISY study in Colorado found 
an association between islet autoimmu-
nity and early childhood gastrointestinal 
infections, but not respiratory infections. 
In summary, prospective studies generally 
do not support the hygiene hypothesis for 
type 1 diabetes.

OTHER VIRUSES
Congenital rubella syndrome results 
in persistent viral infection followed 
by diabetes in about 20% of children 
(106,107). The onset of type 1 diabetes in 
these cases was delayed into the second 
or third decade of life, and >20% of those 
diagnosed did not require insulin (108). 
Most of those patients who developed 
diabetes did not have islet autoantibodies 
using early, poorly standardized assays 
(109,110). The mechanisms by which the 
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rubella virus may cause these diseases 
are not well characterized; however, 
molecular mimicry has been invoked 
(111,112). A review has highlighted gaps 
in the evidence linking congenital rubella 
infections with type 1 diabetes (113). 

Rotavirus also infects beta cells (114) and 
may have a link to islet autoimmunity by 
way of molecular mimicry (115); however, 
evidence for a causal role is lacking (116). 
A longitudinal Australian study reported an 
increased incidence of islet autoantibodies 
shortly after detection of rotavirus infec-
tion (117). The limitation of this study was 
diagnosis of infection based on measure-
ment of serum rotavirus antibodies rather 
than detection of viral presence in stool by 
PCR. A Finnish study that measured rota-
virus antibodies in serum samples collected 
at 3–6-month intervals up to age 2 years 
did not confirm the association (118). 

A causal link between mumps and 
type 1 diabetes has long been 
suggested. Mumps epidemics were 
sometimes followed by sudden, sharp 
increases in type 1 diabetes onset a 
few years later (119), and the presence 
of islet-specific antibodies correlated 
with mumps infections (120). However, 
despite near-eradication of mumps 
through routine childhood vaccination, 
type 1 diabetes incidence is still rising, 
suggesting that mumps is not a trigger 
of type 1 diabetes.

Cytomegalovirus (CMV) has also been 
implicated in the etiology of type 1 
diabetes, primarily using serological 
evidence (121,122,123). In contrast, 
several epidemiologic studies have failed 
to demonstrate a link between CMV and 
the development of islet autoantibodies 
or type 1 diabetes (124,125,126). A 
more recent study analyzed specifically 
a possible association between perinatal 
CMV infection and islet autoantibodies 
in young children with type 1 diabetes 
risk-associated HLA genotypes and found 
none (127).

The Kilham rat virus (KRV), a member of 
the parvovirus family, is sufficient to induce 
type 1 diabetes in diabetes-resistant 

BioBreeding (BB) rats that do not spon-
taneously develop diabetes (128). The 
incidence of human parvovirus infections 
peaks in childhood, the virus is endemic 
with irregular intervals of outbreaks, and 
it promotes a T cell-mediated lympho-
proliferative response that could generate 
autoimmunity. Parvovirus has been 
related to type 1 diabetes, rheumatoid 
arthritis, and Grave’s disease in small 
clinical case-control studies (129,130). 
A homology between the parvovirus B19 
and the extracellular domain of IA-2 islet 
autoantigen suggests a potential mimicry 
(131). However, case-control studies have, 
so far, been negative (132).

Several additional viruses (133,134,135, 
136) have been associated with onset 
of type 1 diabetes, but confirmation is 
lacking. In summary, it has not been 
established beyond reasonable doubt that 
any of the candidate infections triggers 
islet autoimmunity or accelerates islet 
autoimmunity toward diabetes in a large 
number of patients. Further prospective 
studies of these candidate triggers, as well 
as of other microbial agents, are therefore 
warranted in subjects at increased type 1 
diabetes risk. 

High-throughput (“next generation”) 
sequencing technologies are being 
applied to human studies of viruses in 
causation of type 1 diabetes (137). With 
larger and higher quality data sets in the 
future, such as those expected from the 
TEDDY study (11), more sophisticated 
statistical analyses are being applied to 
separate information from noise. Progress 
in sequencing technologies has offered 
attractive new possibilities to detect 
microbes in biological samples and carry 
out metagenomic studies where the whole 
microbiome and virome can be explored 
in the context of islet autoimmunity and 
type 1 diabetes. This concerns not only 
all known microorganisms represented 
in GenBank (www.ncbi.nlm.nih.gov/
genbank/), but also novel ones. 

INTESTINAL MICROBIOTA
In addition to viruses, bacterial infections 
and commensal microbiota may modulate 
the risk of type 1 diabetes (138). The 

mucosal immune system has special-
ized regulatory mechanisms to tolerate 
commensal microorganisms. Some of 
the candidate environmental factors 
that appear to affect the risk of type 1 
diabetes (e.g., cesarean section delivery, 
early childhood diet, use of antibiotics) 
are intertwined with the development 
and function of the human microbiome. 
Intestinal bacteria have also been related 
to type 2 diabetes, inflammatory bowel 
diseases (139), rheumatoid arthritis (140), 
atherosclerosis, allergy, colon cancer, 
and a host of other diseases, but the 
effect appears to be nonspecific. There is 
growing evidence that the “Western” diet 
has altered the genetic composition and 
metabolic activity of the gut microbiota. 
Emerging data support the hypothesis 
that altered gut bacterial composition 
may play a role in development of type 1 
diabetes (141,142,143,144,145,146,147). 
Gut microbes influence lipid and glucose 
metabolism, as well as immunity and 
systemic inflammation outside of the 
intestine (141,148,149,150); therefore, 
they could be considered as a target in 
prevention of metabolic and proinflam-
matory diseases. In general, however, 
microbiome studies in the context of type 
1 diabetes have, thus far, been underpow-
ered and focused on taxa diversity. Some 
have reported lower microbial diversity in 
children with islet autoimmunity before 
progression to diabetes compared to 
healthy controls (138,142,147). The 
picture remains unclear at this time and 
will require large studies that employ 
whole genome sequencing of microbiome 
at multiple time points prior to diagnosis.

VACCINES 
As childhood immunization programs 
have expanded, there has been 
speculation that vaccines may play a role 
in the development of childhood diseases 
that have risen in incidence, such as 
type 1 diabetes (151). Fortunately, no 
association between immunizations and 
islet autoimmunity or type 1 diabetes has 
been found thus far (14,152,153,154). 
A meta-analysis reviewed 23 studies 
investigating 16 vaccinations and analyzed 
11 studies that met the inclusion criteria 
(155). Overall, there was no evidence to 

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
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suggest an association between any of the 
childhood vaccinations investigated and 
type 1 diabetes. The pooled odds ratios 
ranged from 0.58 (95% CI 0.24–1.40) for 
the measles, mumps, and rubella (MMR) 
vaccination in five studies up to 1.04 
(95% CI 0.94–1.14) for the haemophilus 
influenza B (HiB) vaccination in 11 studies. 
Significant heterogeneity was present 
in most of the pooled analyses but was 
markedly reduced when analyses were 
restricted to study reports with high 
methodology quality scores.

The Bacillus Calmette-Guérin (BCG) 
vaccine has attracted some interest as a 
potential immunomodulator that could 
theoretically reduce the incidence of 
autoimmune diabetes. However, human 
data for any association between BCG 
vaccination and type 1 diabetes or islet 
autoimmunity are universally negative. 
Until recently, BCG has been routinely 
administered to all neonates in Finland, 
the country with the highest incidence of 
type 1 diabetes worldwide. Case-control 
studies from Canada (156) and Sweden 

(157) have shown no association of BCG 
vaccination with the risk of diabetes. 
Likewise, the German BABYDIAB study 
(158) reported no association with 
development of islet autoimmunity. 
A 20-year follow-up of the 1974 Canadian 
birth cohort, of which 45% were given 
BCG in the first year of life, also showed 
no association (159). In addition, 
vaccination with BCG at diagnosis of type 
1 diabetes does not increase the remission 
rate or preserve beta cell function 
(160,161).

DIETARY FACTORS

Dietary factors associated with the appear-
ance of islet autoimmunity and progression 
from islet autoimmunity to type 1 diabetes 
are reviewed in this section. 

BREASTFEEDING
An ecologic study suggested an 
association between the decrease in 
breastfeeding and increase in type 1 
diabetes incidence between 1940 and 
1980 (162). Subsequent case-control 
studies have been inconsistent regarding 
whether breastfeeding was associated 
with a decreased risk of type 1 diabetes, 
as reviewed by Knip et al. (163), and two 
meta-analyses reached opposite conclu-
sions (164,165). In 2012, a pooled analysis 
was conducted of 43 retrospective studies, 
showing a small reduction in the risk of 
type 1 diabetes associated with exclusive 
breastfeeding for >3 months (OR 0.87, 
95% CI 0.75–1.00) and any (i.e., nonex-
clusive) breastfeeding for >3 months 
(OR 0.88, 95% CI 0.78–1.00) (166). 
The authors concluded that the findings 
were difficult to interpret because of the 
possible biases (particularly recall bias) 
inherent in the included studies.

All but one of the prospective cohort 
studies failed to find an association 
between breastfeeding duration and 
islet autoimmunity (14,167,168,169,170,
171,172,173). In Sweden, breastfeeding 
<4 months was associated with the 
presence of islet autoantibodies at age 
5 years (OR 2.09, 95% CI 1.45–3.02) 
compared to breastfeeding for ≥4 months 
(174). DAISY found evidence that a child 

who is still breastfeeding at the time of 
introduction to cereals has a reduced 
risk of islet autoimmunity (168), and a 
subsequent analysis in DAISY showed that 
breastfeeding at the time of introduction 
to gluten-containing grains, specifically, 
conferred protection for the development 
of type 1 diabetes (HR 0.47, 95% CI 
0.26–0.86) (169). A similar protective 
relationship between breastfeeding 
and the introduction of gluten has been 
observed in celiac disease (175). These 
findings suggest that while not strongly 
protective independently, breastfeeding 
may be a protective factor in the 
relationship between other dietary factors, 
including but not limited to cereals and 
gluten, and type 1 diabetes (as further 
described in the following sections). 

MATERNAL DIET
Reports attempting to examine the 
association between maternal diet and 
islet autoimmunity have not produced 
supporting evidence. Investigators from 
Sweden found that a low consumption of 
vegetables (<1 time/week) in the maternal 
diet was associated with a higher risk 
of islet autoimmunity in the child (OR 
2.89, 95% CI 1.18–7.05) (176). In the 
United States, a lower consumption of 
potatoes by mothers during pregnancy 
was associated with a higher risk of islet 
autoimmunity in the child (177). 

COW’S MILK
Breastfeeding may be viewed as a 
surrogate for the delay in the introduction 
of diabetogenic substances, such as 

cow’s milk, that are present in formula. 
Cow’s milk introduced at weaning has 
been shown to trigger insulitis and 
diabetes in animal models (178,179). 
Numerous studies have been conducted 
examining the association between age 
at introduction of cow’s milk and type 
1 diabetes or islet autoimmunity, as 
reviewed in Knip et al. (163), and they 
have been inconsistent. One meta-
analysis of case-control studies (165) and 
a nested case-control study of a cohort 
study (180) suggest an increased risk; 
a second meta-analysis (164) and all of 
the prospective cohort studies failed to 
show any association between age at 
introduction of cow’s milk and either islet 
autoimmunity (168,170,171,172,173,181) 
or type 1 diabetes (169). 

In a double-blind, randomized trial in 
Finland (TRIGR Pilot), 230 infants at genet-
ically increased risk for type 1 diabetes 
were assigned to receive either a casein 
hydrolysate formula or a conventional, 
cow’s milk-based formula (control) when-
ever breast milk was not available during 
the first 6–8 months of life (182). The 
incidence of islet antibodies was signifi-
cantly lower in children fed the casein 
hydrolysate formula in comparison to the 
group with conventional cow’s milk-based 
formula (HR 0.54, 95% CI 0.29–0.95) 
(182). A larger, multinational randomized 
intervention study of this same hypoth-
esis, TRIGR, has found no effect on 
development of islet autoimmunity (183); 
follow-up of the study participants for type 
1 diabetes is underway.
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Studies exploring the role of current, i.e., 
childhood, cow’s milk consumption in 
the risk for islet autoimmunity and type 1 
diabetes have also produced contradictory 
results. Cow’s milk intake in childhood has 
been associated with both an increased 
risk of islet autoimmunity (184,185,186) 
and type 1 diabetes (187,188), as well 
as a decreased risk of type 1 diabetes 
(189). A Finnish study found that cow’s 
milk consumption during childhood was 
more closely linked to islet autoimmunity 
and type 1 diabetes risk than was infant 
(early) exposure to cow’s milk (188). 
A nested case-control study within the 
Finnish DIPP cohort found that increased 
cow’s milk intake during childhood was 
weakly associated with increased islet 
autoimmunity risk (184). While a similar 
analysis in the DAISY cohort found no 
association between cow’s milk intake 
and islet autoimmunity risk, increased 
cow’s milk intake was associated with 
progression to type 1 diabetes in children 
with islet autoimmunity (HR 1.59, 95% 
CI 1.13–2.25) (190). In DIPP (191), 
investigators evaluated whether serum 
fatty acids differed between children 
developing islet autoimmunity and 
those remaining autoantibody negative. 
Myristic acid, pentadecanoic acid, 
monounsaturated palmitoleic acid isomers 
16:1 n-7 and 16:1 n-9, and conjugated 
linoleic acid were positively associated 
with the risk of islet autoimmunity at 
or before the time of seroconversion. 
Because these serum fatty acids are 
biomarkers of milk and ruminant meat 
fat (192,193), this suggests that higher 
current consumption of milk and meat 
may be associated with risk of islet 
autoimmunity. The inconsistencies across 
these studies may be due to the modifying 
effects of the underlying genetic profile. 
This is further described in the Gene X 
Environment Interactions section. 

The reports that newly diagnosed diabetic 
children compared with age-matched 
controls have higher levels of serum 
antibodies against cow’s milk proteins 
(194,195) have been difficult to reproduce 
(196). Prospective studies have also 
been contradictory: the Finnish TRIGR 
Pilot study showed higher levels of cow’s 

milk antibodies in infancy prior to the 
development of type 1 diabetes (197), 
whereas DAISY did not observe elevations 
of the cow’s milk IgG4 antibody, beta-
lactoglobulin, prior to islet autoimmunity 
or type 1 diabetes (198).

SOLID FOODS AND CEREALS
In addition to breast milk substitutes, such 
as infant formulas, the infant is exposed 
to other dietary antigens in the first year 
of life that may impact oral tolerance or 
the immune system. Prospective studies 
of children at increased risk for type 1 
diabetes from both Germany (BABYDIAB) 
and Colorado (DAISY) have shown an 
increased risk for islet autoimmunity 
associated with first exposure to cereals 
prior to the third month of life when 
compared with introduction in the fourth 
to sixth months of life. In DAISY, the 
timing of introduction of any type of 
cereal (gluten and non-gluten-containing) 
was associated with an increased 
islet autoimmunity risk, and the study 
also found that there appears to be a 
U-shaped relationship between risk and 
age at introduction, the nadir of the curve 
occurring with introduction in the fourth 
to sixth months of life (168). In contrast, 
BABYDIAB showed the association with 
gluten specifically and found that a 
further protective effect was conferred if 
foods containing gluten were introduced 
after the sixth month (171). Given the 
difference in the defined dietary variables 
(the non-gluten-containing food variable 
in BABYDIAB contained non-cereal foods), 
it is difficult to determine whether the 
two studies actually contradict each other 
regarding whether the driving antigen 
was gluten. The Finnish prospective study 
(DIPP) suggested that introducing gluten-
containing cereals between ages 5 and 
5.5 months (the middle tertile of exposure) 
was associated with an increased risk 
of islet autoimmunity compared with 
introducing gluten after age 5.5 months 
(the third tertile of exposure), but only 
during the first 3 years of life (173). 
There was no increased risk of islet 
autoimmunity associated with introducing 
gluten earlier than age 5 months (the first 
tertile of exposure) compared with after 
age 5.5 months. 

Because gluten is the environmental 
trigger for celiac disease, another 
childhood autoimmune disease with 
many similarities to type 1 diabetes, and 
because gluten is a component of many 
cereals, gluten has been extensively 
studied in the context of type 1 diabetes 
as a potentially important environmental 
exposure. In the BB diabetes-prone 
rat, gluten precipitates the onset of islet 
autoimmunity (199), and MacFarlane et al. 
identified a wheat storage protein called 
Glb1 that may be associated with islet 
damage, by observing that antibodies to 
this protein were detectable in patients 
with diabetes, but not in nondiabetic 
individuals (200). Intervention studies 
in islet autoantibody-positive children 
indicate that while a gluten-free diet 
may not decrease autoantibody titers 
(201,202), it may improve beta cell 
function (202). However, an intervention 
study, in which 150 high-risk infants 
were randomly assigned to a first 
gluten exposure at age 6 months (control 
group) or 12 months (late-exposure group), 
found that delaying gluten exposure 
until age 12 months did not substantially 
reduce the risk for islet autoimmunity 
in genetically at-risk children, nor did it 
increase the risk (104,203).

Other solid foods in the infant diet, 
besides gluten and cereals, have 
been implicated in the etiology of islet 
autoimmunity. In Finland, DIPP found 
that introduction of root vegetables by 
age 4 months was associated with an 
almost twofold increased risk for islet 
autoimmunity compared with introducing 
root vegetables after age 4 months 
(173). They also found that first exposure 
to egg before age 8 months (the first 
tertile of exposure) was associated with 
an increased risk of islet autoimmunity 
compared with introducing egg after age 
11 months (the third tertile of exposure), 
but only during the first 3 years of life 
(173). These cross-study differences may 
be related to country differences in the 
first solid food that is typically introduced 
to infants. In the United States, cereals, 
particularly rice cereal, are often the first 
solid foods to be introduced to the infant 
(168), whereas in other countries, root 
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vegetables and fruits are more common 
first solid foods, suggesting that the 
focus on cereals may not be relevant 
across countries and may explain these 
inconsistent results.

More recently, DAISY and BABYDIAB 
have prospectively examined the relation 
of some of these dietary exposures to 
clinical diabetes in a cohort of children at 
increased risk for type 1 diabetes. In DAISY 
(169), both early (age <4 months) and late 
(age ≥6 months) first exposure to any solid 
food (compared with exposure at age 4–5 
months) predicted development of type 1 
diabetes (HR 1.91, 95% CI 1.04–3.51, and 
HR 3.02, 95% CI 1.26–7.24, respectively). 
Specifically, early exposure to fruit and 
late exposure to rice/oat predicted type 1 
diabetes (HR 2.23, 95% CI 1.14–4.39, and 
HR 2.88, 95% CI 1.36–6.11, respectively). 
BABYDIAB (204) reported that exposure 
to gluten-containing foods before age 
3 months, which occurred rarely, increased 
the risk of developing islet autoantibodies 
and type 1 diabetes (n=3) compared to 
exclusive breastfeeding (HR 3.45, 95% CI 
1.04–11.48) or compared to first exposure 
to gluten between 3.1 and 6.0 months of 
age. In contrast to DAISY, children who 
received gluten-containing foods after age 
6 months did not have an increased risk of 
islet autoantibodies, multiple islet autoan-
tibodies, or type 1 diabetes.

These data suggest that there are specific 
times in infancy wherein exposure is asso-
ciated with an increased risk of developing 
islet autoimmunity and type 1 diabetes. In 
aggregate, these studies lend support to 
the idea that general antigenic stimulation 
is more important than the actual antigen 
in this disease process. The risk associ-
ated with early exposure may suggest 
a mechanism involving an aberrant 
immune response to dietary antigens in 
an immature gut immune system among 
susceptible individuals. The increased risk 
predicted by late exposure to solid foods 
may be related to the larger amounts 
given at initial exposure to older children 
(168,175), nutrient deficiencies (205), and/
or the cessation of breastfeeding before 
solid foods are introduced, resulting in 
a loss of the protective effect of breast 

milk at the introduction of foreign food 
antigens (168,169,175), described earlier 
in this chapter. 

VITAMIN D
Vitamin D has been examined as a 
potentially protective factor, because 
it plays an active role in the regulation 
of the immune system, as well as 
metabolic pathways relevant to diabetes. 
Mechanistically, vitamin D has been 
shown to shift the balance of the body’s 
T cell response toward down-regulation 
of the Th1 immune response (206). 
Both in vitro studies and animal studies 
have found that vitamin D stimulates a 
Th2 response (207,208,209). The Th1 
response plays a key role in response to 
intracellular pathogens, primarily viruses 
and malignancies; its overactivation 
against autoantigens is thought to cause 
autoimmunity leading to type 1 diabetes. 
The Th2 response upregulates antibody 
production to fight extracellular organisms 
and promotes tolerance of the fetus 
during pregnancy; Th2 overactivation may 
lead to atopic dermatitis or asthma.

Vitamin D status during the intrauterine 
period may be of special importance 
for the development of the fetus (210). 
The seasonality of birth in children with 
type 1 diabetes and/or the presence 
of a seasonal pattern at diagnosis of 
type 1 diabetes could be explained 
by seasonal variation in endogenous 
vitamin D production via exposure to the 
sun (211,212). The monthly averages 
of maximal daily temperature and daily 
hours of sunshine were inversely related 
to the number of new patients per month 
in Belgium (213). Ecologic studies suggest 
that ultraviolet radiation exposure, which 
increases the body’s ability to make 
vitamin D, is inversely associated with 
incidence of type 1 diabetes (214,215). 
However, epidemiologic studies of in 
utero vitamin D exposures have been 
inconsistent. In Finland, DIPP (216) 
examined the maternal diet during 
pregnancy and found that vitamin D 
intake was not associated with risk of islet 
autoimmunity nor type 1 diabetes in the 
child, which contradicts previous studies 
from the United States and Sweden that 

found that maternal vitamin D intake 
during pregnancy was associated with a 
decreased risk of islet autoimmunity in 
the child (217,218). In a meta-analysis, 
the pooled odds ratio with maternal intake 
of vitamin D during pregnancy was 0.95 
(95% CI 0.66–1.36), suggesting no effect 
of vitamin D intake (219). A Norwegian 
study found an association between 
higher serum 25-hydroxyvitamin D 
(25(OH)D) in samples collected in late 
pregnancy and lower risk of type 1 
diabetes in the offspring (220), whereas 
a Finnish study found no such association 
with samples collected in the first 
trimester of pregnancy (221). 

Multiple studies have examined the role 
of vitamin D exposure in infancy in the 
pathogenesis of type 1 diabetes. The 
EURODIAB multicenter case-control 
study found that diabetic children were 
less likely to have been given vitamin 
D supplements in infancy than control 
children (222). This finding is similar to 
that found in the previously described 
case-control study from Norway, where 
diabetic children were less likely to have 
been given cod liver oil supplements 
during infancy compared to controls 
(223). However, as fish oils contain 
both omega-3 fatty acids and vitamin 
D, it is not possible to attribute this 
association to one specific component. 
In a large, historical prospective study 
from Finland, infants who received no 
vitamin D supplementation had higher 
risk of type 1 diabetes than those who 
did receive supplements (224). Two meta-
analyses of retrospective studies showed 
that the risk of type 1 diabetes was 
significantly reduced in infants who were 
supplemented with vitamin D compared 
to those who were not supplemented 
(pooled OR 0.71) (219,225). However, in a 
Swedish prospective study, no association 
was found between an intermediate dose 
of vitamin D supplementation during 
infancy and development of diabetes-
related autoantibodies (218). 

Determinants of circulating 25(OH)D, the 
inactive circulating form of vitamin D and 
an established marker of vitamin D status, 
include sun exposure, dietary intake 
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(supplements, fatty fish, and vitamin D 
fortified dairy foods), and genetic predis-
position. The aforementioned studies 
were limited in that they were only able 
to examine vitamin D from supplements 
and were not able to examine vitamin 
D exposure either from foods or via sun 
exposure. DAISY examined the putative 
protective factor, vitamin D, and was 
the first large prospective study to show 
plasma 25(OH)D levels in infancy or 
throughout childhood were not associated 
with islet autoimmunity or progression 
from islet autoimmunity to type 1 diabetes 
in children at increased risk for type 1 
diabetes (226). Dietary intake of vitamin 
D (from food and supplements) was also 
not associated with islet autoimmunity 
or progression to type 1 diabetes in the 
DAISY population (226). Interestingly, 
in a nested case-control study among 
non-Hispanic white U.S. active duty mili-
tary personnel, those with 25(OH)D levels 
≥100 nmol/L in blood samples measured 
prior to diagnosis had a 44% lower risk 
of developing type 1 diabetes than those 
with 25(OH)D levels <75 nmol/L (rate 
ratio 0.56, 95% CI 0.35–0.90) (227), 
suggesting a protective effect of vitamin D 
levels in adult-onset type 1 diabetes cases. 
While misclassification of type 1 and type 
2 diabetes is common in young adults, 
results were similar in all study partici-
pants and those confirmed to have islet 
autoantibodies. Two clinical trials reported 
no effect of 1,25-dihydroxyvitamin D3 
(calcitriol) supplementation on sustained 
insulin production among persons with 
new-onset type 1 diabetes (228,229). 
These inconsistent findings suggest that 
the mechanism by which vitamin D exerts 
its effect on type 1 diabetes is complex. 

One missing component to the aforemen-
tioned analyses is the underlying genetic 
risk. Two GWAS identified variants located 
within or near genes involved in vitamin 
D transport (DBP), cholesterol synthesis 
(DHCR7), and hydroxylation (CYP2R1 
and CYP24A1) associated with 25(OH)D 
levels or vitamin D insufficiency (230,231). 
Genetic variants influencing 25(OH)D  
metabolism have been examined in 
association with both circulating 25(OH)D 
levels and type 1 diabetes (230,231,232). 

The associations found in the aforemen-
tioned GWAS were replicated (231) for four 
vitamin D metabolism genes (DBP, DHCR7, 
CYP2R1, and CYP24A1) with 25(OH)D  
in control subjects. CYP27B1, DHCR7, 
and CYP2R1 were also associated with 
type 1 diabetes. CYP27B1 had previously 
been associated with type 1 diabetes in 
2007 (233). DAISY found that variants in 
DHCR7 and CYP27B1 were associated 
with development of islet autoimmunity, 
but not progression to type 1 diabetes, 
in children with islet autoimmunity (234). 
The DHCR7 variant was also found to be 
associated with 25(OH)D levels in DAISY 
children; however, since 25(OH)D levels 
were not associated with islet autoim-
munity or type 1 diabetes risk (226), the 
effect of this variant is not likely mediated 
through 25(OH)D levels, suggesting that 
this enzyme may influence diabetes risk 
via other mechanisms. 

POLYUNSATURATED FATTY ACIDS
Several studies have demonstrated a 
strong effect of long-chain polyunsatu-
rated fatty acids, specifically omega-3 
fatty acids, on inflammatory responses 
in animals and humans (235,236). A rela-
tive deficiency of omega-3 fatty acids, a 
characteristic of many Western diets, may 
predispose to heightened inflammatory 
reactions and, thus, increase the risk for 
autoimmune diseases, such as type 1 

diabetes. Alpha-linolenic acid (ALA) is the 
principal omega-3 fatty acid in Western 
diets and is found in the green leaves of 
plants and in flax, canola, walnuts, and 
soy. The next most common omega-3 
fatty acids are eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), 
which are found in fatty fish. Fatty acid 
levels in plasma or serum and fatty acid 
content of erythrocyte membranes are 
short-term and long-term markers of fatty 
acid status, respectively. 

In Norway, a prospective study of DHA 
and EPA and other fatty acids in the 
phospholipid fraction of maternal serum 
collected in late pregnancy found no 
association with risk of type 1 diabetes 
before age 15 years (237). However, as 
mentioned previously, children with type 1 
diabetes were less likely to have received 
cod liver oil (which contains DHA and EPA, 
along with vitamin D) in infancy (223) and 
had a decreased percentage of DHA in 
erythrocyte membranes (238) compared 
with controls. DAISY reported that 
higher omega-3 fatty acid intake during 
childhood was associated with a lower risk 
of islet autoimmunity and, likewise, that 
higher omega-3 fatty acid levels in the 
erythrocyte membrane were associated 
with a lower risk of islet autoimmunity 
(Figure 11.4) (13). In DIPP, while 
investigators did not find an association 

FIGURE 11.4. Risk of Developing Islet Autoimmunity for Reported Dietary Intake of Omega-3 
Fatty Acids and Omega-3 Fatty Acid Levels in Erythrocyte Membranes, Diabetes Autoimmunity 
Study in the Young (DAISY), 1994–2006

Omega-3 Fatty Acid Intake Omega-3 Fatty Acid Levels
in Erythrocyte Membranes  

1 

0.1 

HR*: 0.45
(0.29–0.96) 

HR*: 0.63
(0.41–0.96) 

H
az

ar
d 

ra
tio

 (9
5%

 C
I)

CI, confidence interval; HR, hazard ratio.
* Hazard ratios calculated for 1-standard deviation difference in omega-3 levels, adjusted for human leukocyte 

antigen (HLA) genotype, family history of type 1 diabetes, and caloric intake (for intake variable only).

SOURCE: Reference 13



Risk Factors for Type 1 Diabetes

11–13

between serum EPA or DHA and risk of 
islet autoimmunity, they showed that lower 
serum linoleic acid, an omega-6 fatty acid, 
was associated with increased risk of islet 
autoimmunity (191). 

VITAMIN E
Animal models suggest that vitamin 
E, or α-tocopherol, may protect against 
diabetes (239,240). High maternal intake 
of vitamin E and other nutrients, such as 
retinol, beta-carotene, vitamin C, selenium, 
or manganese, was not associated with 
development of islet autoimmunity in 
children (241). Serum α-tocopherol, but 
not retinol or selenium, was inversely 
associated with type 1 diabetes in a 
small case-control study nested within 
a 21-year follow-up of adult Finnish men 
(242). In a cohort of initially nondiabetic 
siblings of children with type 1 diabetes, 
an inverse association with borderline 
significance between serum α-tocopherol 
concentrations and the risk of diabetes 
was observed (243). However, in DIPP, 
serum α-tocopherol concentrations were 
not significantly associated with the risk of 
islet autoimmunity (244).

ZINC
Studies have shown that serum, 
plasma, or intracellular zinc levels are 
significantly lower in type 1 diabetes 
patients than in controls (245,246). The 
role of zinc deficiency in triggering onset 
or progression of islet autoimmunity is 
unclear, but it could be related to the 
synthesis, storage, and secretion of 
insulin that require zinc for conformational 
integrity of insulin as a hexamer. 
Autoantibodies to ZnT8 are present in 
60%–80% of newly diagnosed patients 
with type 1 diabetes (247). Ecologic 
studies suggest that the incidence rate 
of childhood diabetes is significantly 
higher in areas with lower levels of zinc in 
the drinking water (248,249). In Sweden, 
water samples from families with children 
with diabetes had lower concentrations 
of zinc (OR 0.72, 95% CI 0.57–0.90) 
than water samples from control families 
(250). A study from Finland suggests 
no association between maternal 
consumption of zinc during pregnancy 
and risk of islet autoimmunity (241).

WEIGHT GAIN, INSULIN RESISTANCE, 
AND BETA CELL STRESS 
A number of studies have investigated the 
hypothesized association between obesity, 
insulin resistance, beta cell stress, and the 
development of type 1 diabetes (251,252) 
and have been reviewed by Rewers (253).

Birth Weight and Infant Growth
A study from Norway found an almost 
linear correlation between the incidence 
of type 1 diabetes and birth weight (254). 
The risk of type 1 diabetes was higher 
by more than twofold in children with 
birth weight >4,500 g in comparison to 
newborns with the lowest birth weight 
(<2,000 g) (254). Two meta-analyses 
suggest that children who are heavier at 
birth have a significant and consistent, 
but relatively small, increase in risk of 
type 1 diabetes (255,256). In addition, 
studies indicate that rapid weight gain 
during the first year of life is a risk 
factor for type 1 diabetes (257,258,259). 
These findings were confirmed in a 
meta-analysis (255). Another study 
showed that children developing diabetes 
had increased height gain at age 0–18 
months and were significantly taller from 
ages 6 to 18 months compared with 
controls (260). However, DAISY showed 
that weight growth was not associated 
with risk of type 1 diabetes neither in the 
first 9 months nor in the first 15 months 
of life (height growth not measured 
before the age of 24 months) (169).

Height, Weight, and Body Mass Index
The “Accelerator Hypothesis” proposes 
that excess weight gain leading to 
increases in insulin resistance in early 
childhood initiates the autoimmunity 
leading to beta cell destruction and type 
1 diabetes development (251). The rising 
blood glucose (glucotoxicity) may accel-
erate beta cell apoptosis directly or by 
inducing beta cell immunogens in genet-
ically predisposed subjects. Ecologic 
studies have suggested a correlation 
between increasing body mass index 
(BMI), weight, and height, and incidence 
of type 1 diabetes in the population 
(261,262). Several studies have shown 
an association between higher BMI 
Z-scores and earlier age at diagnosis 

of type 1 diabetes (263,264,265,266), 
although others have not (267,268,269). 
In case-control studies, children with 
type 1 diabetes showed increased 
weight, height, or BMI Z-scores in early 
childhood compared with nondiabetic 
children (260,270,271,272,273,274,275). 
Analysis of the 1970 British Birth Cohort 
suggested that increased BMI in child-
hood increased risk of self-reported 
type 1 diabetes (276). Similarly, in the 
Australian BabyDiab cohort, higher 
weight and BMI Z-scores were associated 
with development of islet autoimmunity 
(277). However, analyses of the prepu-
bertal DAISY cohort showed that BMI was 
not associated with development of islet 
autoimmunity nor progression to type 
1 diabetes and that height and weight 
were weakly inversely associated with 
risk of islet autoimmunity (278), which is 
contrary to the Accelerator Hypothesis. 
However, greater height growth velocity 
was associated with islet autoimmu-
nity development and type 1 diabetes 
development, suggesting that velocity 
of growth and its related stressors may 
be involved in the progression from 
genetic susceptibility to islet autoim-
munity and then to type 1 diabetes in 
prepubertal children. BABYDIAB partic-
ipants positive for islet autoantibodies 
did not have an increased homeostasis 
model assessment of insulin resistance 
(HOMA-IR) compared with age-matched 
islet autoantibody-negative children at 
ages 8 or 11 years (279). Contrary to 
the accelerator hypothesis, islet auto-
immunity status was associated with 
decreased HOMA-IR values, controlling 
for age and sex (p=0.01). BMI was similar 
between islet autoantibody-positive and 
autoantibody-negative children at ages 2, 
5, 8, and 11 years and similar to that of 
national reference values (279).

In summary, small and inconsistent 
effects of height or weight have been 
reported by some studies, mostly from 
Scandinavia. These are likely not causally 
related to the autoimmune disease 
process in a vast majority of the cases. 
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Glycemic Index
In addition to growth, obesity, and insulin 
resistance, dietary factors, such as 
glycemic index and glycemic load, may also 

stress the beta cells. While development 
of islet autoimmunity was not associated 
with either, progression to type 1 diabetes 
in children with islet autoimmunity was 

associated with higher glycemic index and 
load at the first islet autoimmunity-positive 
visit (280), perhaps due to increased 
demand on the beta cells to release insulin.

TOXINS AND CHEMICAL COMPOUNDS

Toxins found in foods or water may 
activate autoimmune mechanisms in 
genetically susceptible individuals, and 
exposure to toxins may result in pancre-
atic islet cell death. Streptozotocin 
(281,282) or dietary nitrates and nitro-
samines (283) induce islet autoimmunity 
in animal models. Circumstantial and 
ecologic evidence suggests a connec-
tion between type 1 diabetes and 
water containing nitrates, nitrites, or 
nitrosamines, although other studies 
have shown either no or contradic-
tory associations (248,284,285). In a 
case-control study in Sweden, type 1 

diabetes was associated with consuming 
higher amounts of foods containing 
nitrosamines (OR 1.7 and OR 2.6) and 
nitrates or nitrites (OR 0.8 and OR 
2.4 for medium and high, respectively, 
compared with low amounts) (286). In 
Sweden, water samples from families 
with children with diabetes had higher 
concentrations of nitrate (OR 1.32, 95% 
CI 1.06–1.64) than water samples from 
control families (250). In Canada, only a 
nonsignificant trend between increasing 
consumption of nitrates in food and 
type 1 diabetes was observed (287). In 
Germany, water concentrations of nitrate 

and nitrite were not associated with risk 
of either islet autoimmunity or progres-
sion to type 1 diabetes progression (288).

Animal studies show that ingestion of 
subtoxic levels of bafilomycin, a natural 
toxin found in skins of Streptomyces-
infected root vegetables, such as potatoes, 
by pregnant nonobese diabetic mice 
results in higher incidence and earlier 
onset of diabetes in their offspring 
(289,290,291). Thus, exposure to small 
quantities of bafilomycin in the maternal 
diet during pregnancy may contribute to 
risk of type 1 diabetes in the child. 

METABOLOMIC STUDIES

The serum/plasma metabolite profile 
detected by combining gas and 
liquid chromatography followed by 
mass spectrometry has established 
metabolomics as a readout of phenotypes 
that has enabled the discovery of 
previously undetected associations 
between metabolic pathways and 
diseases. Metabolomics is central to 
the analysis of samples obtained prior 
to development of islet autoimmunity. 
These analyses can be used to test 
the hypothesis that a trigger(s) of islet 
autoimmunity induces or acts upon 
metabolic disturbances that predict 
the appearance of islet autoantibodies. 
Similarly, children with islet autoimmunity 
may express specific serum metabolite 
profiles heralding clinical onset of 
diabetes. 

High genetic risk Finnish children followed 
since birth until diagnosis of type 1 
diabetes had reduced serum levels of 
succinic acid and phosphatidylcholine 
already at birth. Furthermore, levels 
of lysophosphatidylcholine increased 
months before seroconversion to islet 
autoantibodies but normalized after 
seroconversion (292). An independent 

population of offspring of type 1 diabetes 
parents has suggested that higher 
levels of odd-chain triglycerides and 
polyunsaturated fatty acid-containing 
phospholipids may predict islet 
autoimmunity (293). In addition, children 
developing islet autoimmunity before age 
2 years had lower levels of methionine 
than those developing islet autoimmunity 
at older ages (293). 

A Swedish cohort study used umbilical 
cord blood lipidomic analysis to identify 
possible risk markers for the early develop-
ment of type 1 diabetes while controlling 
for HLA genotype, sex, and date of birth, 
as well as mother’s age and gestational 
age (294). A total of 106 lipid metabolites 
from cord blood samples were identified 
and, using principal component analysis, 
were analyzed for their predictive ability. 
In the children developing type 1 diabetes 
before age 4 years, lower levels of cord 
blood phospholipids (phosphatidylcholines, 
phosphatidylethanolamines, and sphingo-
myelins) all predicted development of type 
1 diabetes, while in the children devel-
oping type 1 diabetes before age 2 years, 
triglycerides predicted type 1 diabetes. 
These results were replicated in a study 

of cord blood from children in the DIPP 
study, which also showed higher risk of 
progression to type 1 diabetes associated 
with lower levels of choline-containing 
phospholipids, including sphingomyelins 
and phosphatidylcholines (295).

The metabolomic studies to date present 
several leads for a search for the envi-
ronmental factors that trigger islet 
autoimmunity and are involved in the 
increasing incidence of type 1 diabetes. 
The alterations in cord blood lipoprotein 
profiles noted in both the DIPP and 
Diabetes Prediction in Skåne (DiPiS) 
studies suggest that the intrauterine 
environment may affect type 1 diabetes 
risk. Further, the other early metabolomic 
changes may reflect specific alterations 
in the infant’s microbiome. Other lipid-
omic and metabolomic changes noted 
above that precede the development of 
autoimmunity may reflect the activation 
of proinflammatory and anti-inflammatory 
mechanisms in early islet autoimmunity. 
While fascinating, these findings have to 
be interpreted with caution as the studies 
to date have been very small and remain 
to be replicated (for a comprehensive 
review see Frohnert and Rewers [296]).
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PSYCHOSOCIAL AND SOCIOECONOMIC FACTORS 

PSYCHOLOGICAL STRESS
A role of psychological stress in 
the etiology of type 1 diabetes has 
been suggested by case reports and 
small case-control studies (297). A 
cross-sectional study of 4,400 general-
population children in Sweden found an 
association between presence of GAD 
autoantibodies at age 1 year and the 
history of high parenting stress (OR 1.8, 
95% CI 1.2–2.9, p<0.01), serious life 
events (OR 2.3, 95% CI 1.3–4.0), foreign 
origin of the mother (OR 2.1, 95% CI 
1.3–3.3), and low paternal education 
(OR 1.6, 95% CI 1.1–2.3), independent 
of family history of diabetes (298). The 
same group of investigators reported 

that mothers’ experiences of divorce (OR 
3.6, 95% CI 1.4–9.6) or violence (OR 2.9, 
95% CI 1.0–7.8) were associated with 
islet autoimmunity in the children age 2.5 
years (299). Finally, in a Danish cohort 
of 1,548,746 children, 39,857 children 
were exposed to bereavement during 
their prenatal life. Children (primarily 
females) who were exposed to maternal 
bereavement due to traumatic father 
or sibling deaths had an increased risk 
of type 1 diabetes (relative risk [RR] 
2.03, 95% CI 1.22–3.38) (300). While 
suggestive, these data need to be 
confirmed in a prospective study with 
exposures and outcomes ascertained at 
frequent intervals.

SOCIOECONOMIC FACTORS
The wide variation in childhood type 1 
diabetes incidence rates within different 
populations could be partially explained 
by indicators of national and individual 
prosperity. An Italian study suggested 
that the association between early-life 
socioeconomic indicators and the risk of 
type 1 diabetes varied by age at onset of 
diabetes (301). These indicators could 
reflect differences in environmental risk 
factors, such as nutrition or lifestyle, that 
are important in determining the risk of 
type 1 diabetes. The EURODIAB study 
has shown a positive association of inci-
dence rates with increasing value of gross 
domestic product (302). 

OTHER FACTORS 

Initiation of persistent islet autoimmu-
nity may be related to factors operating 
during pregnancy, such as infections, 
preeclampsia, blood incompatibility, or 
during the perinatal period.

PRENATAL AND 
PERINATAL FACTORS
In utero and perinatal exposures may 
trigger islet autoimmunity. Viral infection 
of a fetus or newborn often evades clear-
ance and may induce lifelong immunologic 
tolerance to the virus (303). The ability of 
the offspring’s immune system to regard 
a virus as self may have consequences for 
latency, re-infection, and autoimmunity. 
Such a mechanism has been proposed for 
the role of enteroviruses and rubella virus 
in the etiology of type 1 diabetes.

Other potential risk factors include 
ABO incompatibility, hyperbilirubinemia, 
preeclampsia (304), complicated delivery 
(169,305), mother’s age (306), and 
high birth weight for gestational age 
(305,306,307). In contrast, smoking in 
pregnant mothers was found to reduce 
type 1 diabetes risk (307). A systematic 
review and meta-analysis of 18 studies 
suggested that preterm birth was 
significantly associated with increased 
risk of type 1 diabetes (OR 1.18, 95% 
CI 1.11–1.25) (308). Subgroup analyses 
suggested the association was present 
both in case-control studies (OR 1.16, 
95% CI 1.06–1.26) and cohort studies 
(RR 1.20, 95% CI 1.11–1.29). A large 
Swedish cohort study found an inverted 
U-shaped relation between gestational 

age and type 1 diabetes (309). Children 
born before the 33rd week or after the 
40th week were at the lowest risk, while 
those born between 33 and 36 weeks 
were at the highest risk (RR 1.18, 95% CI 
1.09–1.28), compared to those born at 
term. While these factors are unlikely to 
directly trigger islet autoimmunity, they 
may direct future research toward causal 
exposures.

Further evidence of fetal programming of 
type 1 diabetes risk comes from the still 
unexplained decreased type 1 diabetes 
risk in children of mothers with type 1 
diabetes compared to children of fathers 
with type 1 diabetes (310,311).

GENE X ENVIRONMENT INTERACTIONS

The inconsistencies in the associations 
between dietary factors and islet auto-
immunity or type 1 diabetes across 
studies may be explained, in part, by 
methodologic differences in population 
selection and data collection. However, 
another explanation is gene-environment 
interaction, where the differences in the 
observed exposure associations may be 
due to differences in gene allele frequency 
across populations. There are a number 

of ways to explore gene x environment 
interaction in epidemiologic data, each 
dependent on the underlying hypothesis. 

One hypothesis is that the effect of envi-
ronmental risk factors may be stronger 
among individuals possessing increased 
genetic risk variants; whereby the odds 
ratio (or relative risk) is significantly 
different than 1 (i.e., associated) in those 
possessing the genetic risk variants, such 

as the HLA-DR risk genotypes, and null 
(i.e., not associated) in those without the 
variants, perhaps because it is easier to 
see the effect of the exposure in a geneti-
cally susceptible population. Alternatively, 
the aforementioned rise in type 1 diabetes 
incidence, coupled with data suggesting 
an increasing penetrance of moderate-risk 
HLA-DR genotypes, suggests that the 
pressures of an increasingly permissive 
environment may be more easily observed 
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in children with moderate- or low-risk 
HLA-DR genotypes compared with high-
risk genotypes.

In addition, one can examine a potential 
gene x environment interaction in 
more detail by dividing analyses into 
exposure*HLA combinations, with one risk 
group being those who have the exposure 
but not the HLA genotype, another risk 
group contains those who have the 
HLA genotype and not the exposure, 
and the putative highest risk group (i.e., 
representing the interaction) would be 
those with both the HLA genotype and the 
exposure. Each of these risk groups would 
be compared to the referent group, who 
are those with neither the HLA genotype 
nor the exposure. If the odds ratio in those 
with both the genetic variant and the 
exposure is greater than the product of 
the odds ratio for the exposure and odds 
ratio for the genotype, then the interaction 
is considered more than multiplicative. 

Several studies have examined potential 
interactions between the HLA variants 
and dietary exposures. Stene et al. 
tested whether the effect of different 
dietary factors (use of cod liver oil and 
multivitamins by the mother during 
pregnancy, use of cod liver oil or vitamin 
D supplements in the first year of life, and 
exclusive breastfeeding for <3 months) 
differed across HLA risk groups and 
found no evidence of interaction, although 
power was limited (312). In DAISY, the 
hazard ratios for islet autoimmunity 
for early and late exposure to cereals 
in children with HLA-DR3/4 genotype 
were greater than in children with the 
moderate and low HLA-DR genotypes, 
although the interaction term was only 
marginally significant (168). Studies 
from Colorado and Chile have indicated 
a more than multiplicative joint effect of 
HLA-DR risk and either short duration 
of exclusive breastfeeding (313) or early 
introduction of cow’s milk and solid foods 
(314). As an example, in the Colorado 
study, the odds ratio for type 1 diabetes 
for being HLA-DR3/4 in the absence of 
early exposure to solid foods was 3.1 
(95% CI 1.4–7.2), the odds ratio for early 
exposure to solid foods in the absence of 

HLA-DR3/4 was 1.7 (95% CI 0.5–5.8), and 
the odds ratio for having both HLA-DR3/4 
and early exposure to solid foods was 6.3 
(95% CI 2.5–16.1) (314). 

The inconsistent findings with childhood 
cow’s milk consumption and risk of islet 
autoimmunity or type 1 diabetes may be 
due to the modifying effects of the under-
lying genetic profile. In DAISY, greater 
childhood cow’s milk protein intake (as a 
surrogate of total milk consumption) was 
associated with increased islet autoimmu-
nity risk in children with low/moderate-risk 
HLA-DR genotypes (HR 1.41, 95% CI 
1.08–1.84), but not in children with high-
risk HLA-DR genotypes (315).

In addition to HLA, other type 1 diabetes 
candidate genes, such as INS, PTPN22, 
CTLA4, and IFIH1, have been explored for 
interactions with dietary exposures. DIPP 
(316) detected an interaction between 
early cow’s milk exposure, PTPN22, 
and appearance of islet autoimmunity, 
where the PTPN22 polymorphism was 
associated with the development of islet 
autoimmunity only in children exposed to 
cow’s milk formula prior to age 6 months. 

Investigators have explored interactions 
with genes that are not candidate genes 
for type 1 diabetes but may be related 
to dietary exposures either with regard 

to metabolism or action. For example, 
omega-3 fatty acids may act as ligands for 
the nuclear receptor peroxisome prolifer-
ator-activated receptor-gamma (PPARG) 
to promote anti-inflammatory actions. 
However, no evidence of interaction was 
found between the PPARG gene variant 
and cod liver oil intake on risk of type 
1 diabetes in a Norwegian case-control 
study (317). Delta-6-desaturase, encoded 
by FADS2, and delta-5-desaturase, 
encoded by FADS1 (318), work in series 
to convert the omega-3 fatty acid ALA 
to the more anti-inflammatory fatty acid 
EPA. DAISY observed a strong interaction 
between dietary intake of ALA and FADS1 
and FADS2 on risk of islet autoimmu-
nity, where ALA intake was significantly 
more protective for islet autoimmunity in 
the presence of the increasing number 
of minor alleles at FADS1 rs174556 
(pinteraction=0.017), at FADS2 rs174570 
(pinteraction=0.016), and at FADS2 rs174583 
(pinteraction=0.045) (Figure 11.5) (319). Thus, 
the putative protective effect of n-3 fatty 
acids on islet autoimmunity may result 
from a complex interaction between 
intake and genetically controlled fatty acid 
desaturation.

In BABYDIAB, cesarean section appeared 
to interact with immune response genes, 
such as the IFIH1 gene, where increased 
risk for type 1 diabetes was only seen in 

FIGURE 11.5. Risk of Developing Islet Autoimmunity for Reported Intake of Omega-3 Fatty 
Acids. Interaction Between Intake of Alpha-Linolenic Acids and Polymorphisms of FADS1 
and FADS2, Diabetes Autoimmunity Study in the Young (DAISY), 2001–2008 
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children who were delivered by cesarean 
section and had type 1 diabetes-susceptible 
IFIH1 genotypes (12-year risk, 9.1% vs. 
<3% for all other combinations, p<0.0001) 

(320). In Norway, mode of delivery was 
also found to interact with PTPN22, using 
a case-only approach, where the relative 
risks for type 1 diabetes conferred by 

PTPN22 were 2.11 (95% CI 1.64–2.72) 
for those born vaginally and 0.99 (95% CI 
0.50–1.99) for those born by cesarean 
section (pinteraction=0.028) (321). 

ENVIRONMENT X ENVIRONMENT INTERACTIONS

Environmental exposures may also 
interact, or act in concert, with other 
environmental exposures; however, 
examples of these observations are not 
prevalent in the scientific literature. DAISY 
(322) observed that a greater number of 
gastrointestinal illnesses was associated 
with an increased risk of islet autoimmu-
nity, but only among children who were 
exposed to gluten-containing grains 
(wheat or barley) either age <4 months 
(HR 1.37, 95% CI 1.22–1.55) or age 
≥7 months (HR 1.12, 95% CI 1.05–1.19). 
Power to detect gene-environment or 

environment-environment interactions 
has been limited in studies reported 
so far. Table 11.5 provides a summary 
of the significant associations with diet 
described above, including gene-diet and 
infection-diet interactions. 

Prospective cohort studies have contrib-
uted enormously to the understanding 
of the natural history and risk factors for 
type 1 diabetes. A variety of exposures 
appear to trigger islet autoimmunity 
and to promote progression to clinical 
diabetes in some children; none of the 

current candidate risk factors seems to 
explain most of the risk. Future trials may 
need to take into account the genetic 
and environmental heterogeneity of 
this disease in developing personalized 
interventions.

TABLE 11.5. Summary of Published Dietary Findings From Prospective Studies of Islet Autoimmunity and Type 1 Diabetes

DIETARY EXPOSURE

PREDICTORS OF INCREASED 
RISK OF ISLET AUTOIMMUNITY  

(STUDY) (REF.)

PREDICTORS OF RISK OF 
PROGRESSION TO TYPE 1 
DIABETES IN CHILDREN 

WITH ISLET AUTOIMMUNITY 
(STUDY) (REF.)

PREDICTORS OF TYPE 1 
DIABETES IN COHORT 

(STUDY) (REF.)

In utero diet Low intake of vegetables in maternal diet 
during pregnancy (ABIS) (176)

Low intake of potatoes in maternal diet 
during pregnancy (DAISY) (177)

Breastfeeding Short breastfeeding duration (partial and 
exclusive) (ABIS) (174)

Infant not breastfed when first exposed 
to gluten (DAISY) (169)

Infant not breastfed when first exposed 
to cereals (DAISY) (168)

Cow’s milk No effect of cow’s milk-based formula 
compared with hydrolysate formula in 
infancy (TRIGR) (183)

Increased childhood cow’s milk 
consumption (DAISY) (315)

Increased cow’s milk antibodies in 
infancy (TRIGR Pilot) (197)

Increased childhood cow’s milk 
consumption (DIPP) (184)

Gene-environment interaction: 
Increased childhood cow’s milk 
consumption and HLA* (DAISY) (315)

Increased serum myristic acid, 
pentadecanoic acid, monounsaturated 
palmitoleic acid isomers 16:1 n-7 and 
16:1 n-9, and conjugated linoleic acid 
(biomarkers of milk and ruminant meat 
fat intake) (DIPP) (191)

Gene-environment interaction: 
Early cow’s milk formula exposure 
and PTPN22† (DIPP) (316)

Solid foods and cereals First exposure to cereals before age 
3 months or not until after age 6 months 
(DAISY) (168)

First exposure to solid foods before age 
4 months or not until after age 6 months 
(DAISY) (169)

First exposure to gluten before age 
3 months (BABYDIAB) (171)

First exposure to fruit before age 4 
months (DAISY) (169)

Table 11.5 continues on the next page.
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DIETARY EXPOSURE

PREDICTORS OF INCREASED 
RISK OF ISLET AUTOIMMUNITY  

(STUDY) (REF.)

PREDICTORS OF RISK OF 
PROGRESSION TO TYPE 1 
DIABETES IN CHILDREN 

WITH ISLET AUTOIMMUNITY 
(STUDY) (REF.)

PREDICTORS OF TYPE 1 
DIABETES IN COHORT 

(STUDY) (REF.)

First exposure to root vegetables before 
age 4 months (DIPP) (173)

First exposure to rice/oat after age 6 
months (DAISY) (169)

First exposure to gluten between ages 5 
and 5.5 months (compared with later), 
only for islet autoimmunity developing in 
the first 3 years of life (DIPP) (173)

Environment-environment interaction: 
Early and late exposure to gluten and 
increased number of gastrointestinal 
infections‡ (DAISY) (322)

Gene-environment interaction: 
First exposure to cereals before age 3 
months or not until after age 6 months 
and HLA§ (DAISY) (168)

First exposure to egg before age 8 
months (compared with after 11 months), 
only for islet autoimmunity developing in 
the first 3 years of life (DIPP) (173)

Vitamin D Low intake of vitamin D from foods in 
maternal diet during pregnancy (DAISY) 
(217)

No vitamin D supplementation in infancy 
(224) 

Low intake of vitamin D in maternal diet 
during pregnancy (ABIS) (218)

Low 25(OH)D levels in serum (DODSR) 
(227)

Low serum 25(OH)D levels in mother 
during pregnancy (220)

Polyunsaturated fatty acids Decreased omega-3 fatty acids in diet 
(DAISY) (13)

Gene-environment interaction:
Decreased ALA intake and FADS1/
FADS2║(DAISY) (319) 

Decreased erythrocyte membrane 
omega-3 fatty acid levels (DAISY) (13)

Decreased erythrocyte membrane DPA 
levels (DAISY) (319)

Decreased serum ALA (DIPP) (191)

Vitamin E Low serum alpha-tocopherol (242)

Obesity, insulin resistance, 
and beta cell stress

Increased height growth velocity (DAISY) 
(278)

Increased height growth velocity (DAISY) 
(278)

Increased BMI in childhood (1970 British 
Birth Cohort) (276)

Lower height (DAISY) (278) Higher glycemic index of the diet (DAISY) 
(280)

Lower weight (DAISY) (278)

Higher weight (Australian BabyDiab) 
(277)

Increased BMI Z-score (Australian 
BabyDiab) (277)

TABLE 11.5. (continued)

Data in the table include nested case-control studies within prospective cohort studies. 25(OH)D, 25-hydroxyvitamin D; ABIS, All Babies In Southeast Sweden; ALA, alpha-
linolenic acid; BMI, body mass index; DAISY, Diabetes Autoimmunity Study in the Young; DIPP, Diabetes Prediction and Prevention Study; DODSR, U.S. Department of Defense 
Serum Repository; DPA, docosapentaenoic acid; HLA, human leukocyte antigen; TRIGR, Trial to Reduce IDDM in the Genetically at Risk.
* Increased childhood cow’s milk consumption in the moderate-risk HLA group, not the high-risk group.
† Possessing the PTPN22 polymorphism increases risk only in children exposed to cow’s milk formula during early infancy.
‡ A greater number of gastrointestinal illnesses were associated with an increased risk of islet autoimmunity but only among children who were exposed to gluten-containing 

grains (wheat or barley) either age <4 months or ≥7 months compared with age 4–6 months.
§ Early and late exposure to cereals are more strongly associated with islet autoimmunity in children with HLA-DR3/4 genotype compared with those with the moderate- and 

low-risk HLA-DR genotypes (interaction term was marginally statistically significant).
║ ALA intake is more protective in the presence of increasing number of minor alleles at FADS1 and FADS2.

SOURCE: References are listed within the table.
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LIST OF ABBREVIATIONS

25(OH)D  . . . . .25-hydroxyvitamin D
ALA . . . . . . . . .alpha-linolenic acid 
BB . . . . . . . . . .BioBreeding
BCG . . . . . . . . .Bacillus Calmette-Guérin
BMI . . . . . . . . .body mass index
CI . . . . . . . . . . .confidence interval
CMV . . . . . . . . .cytomegalovirus 
DAISY. . . . . . . .Diabetes Autoimmunity Study in the Young
DHA . . . . . . . . .docosahexaenoic acid
DiMe . . . . . . . .Childhood Diabetes in Finland Study
DIPP  . . . . . . . .Diabetes Prediction and Prevention Study 
EPA . . . . . . . . .eicosapentaenoic acid
GAD . . . . . . . . .glutamic acid decarboxylase
GWAS  . . . . . . .genome-wide association studies
HLA . . . . . . . . .human leukocyte antigen
HOMA-IR . . . . .homeostasis model assessment of insulin resistance
HR . . . . . . . . . .hazard ratio
IA-2  . . . . . . . . .insulinoma antigen 2
IFIH1 . . . . . . . .interferon-induced helicase C domain-containing protein 1
MIDIA . . . . . . . .Environmental Triggers of Type 1 Diabetes Study
OR . . . . . . . . . .odds ratio
PPARG . . . . . . .peroxisome proliferator-activated receptor-gamma
RR . . . . . . . . . .relative risk
RT-PCR  . . . . . .reverse transcription-polymerase chain reaction
TEDDY . . . . . . .The Environmental Determinants of Diabetes in the Young
TRIGR . . . . . . . .Trial to Reduce IDDM in the Genetically at Risk
ZnT8 . . . . . . . . .zinc transporter 8
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