CHAPTER 25 IMPACT OF SLEEP AND CIRCADIAN DISTURBANCES ON GLUCOSE METABOLISM AND TYPE 2 DIABETES

Sirimon Reutrakul, MD, CDE, Naresh M. Punjabi, MD, PhD, and Eve Van Cauter, PhD

Dr. Sirimon Reutrakul is Associate Professor in the Division of Endocrinology and Metabolism, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. Dr. Naresh M. Punjabi is Professor in the Department of Medicine, Johns Hopkins University, Baltimore, MD. Dr. Eve Van Cauter is the Frederick H. Rawson Professor in the Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism and the Director of the Sleep, Metabolism and Health Center, Department of Medicine, The University of Chicago, Chicago, IL.

SUMMARY

The term "sleep disturbance" is widely used to refer to a variety of conditions, including sleep insufficiency, sleep fragmentation, sleep disorders, such as sleep apnea, and misaligned sleep, as occurs in shift workers. Insufficient sleep and sleep fragmentation are linked to abnormal glucose metabolism, insulin sensitivity reduction of 20%–30%, and increased diabetes risk. Well-controlled laboratory studies have provided insights regarding the underlying mechanisms. Multiple large prospective studies have found that that these sleep disturbances increase the risk of incident diabetes by as much as 30%–50%. Obstructive sleep apnea (OSA), which combines sleep fragmentation and hypoxemia, has been identified as a risk factor for insulin resistance and diabetes. OSA is highly prevalent in patients with type 2 diabetes, affecting roughly two out of three patients, and its severity correlates with glycemic control. Whether glycemic control can be improved by treating OSA remains controversial. Sleep disturbances during pregnancy are linked to gestational diabetes and hyperglycemia, and there is evidence for potential adverse effects on maternal and fetal health. Evidence from animal models has identified disruption of the circadian system as a putative risk factor for adverse metabolic outcomes. Shift work, a condition of chronic circadian disruption, is linked to weight gain and incident obesity and diabetes.

As sleep disturbances are increasingly common in modern society and may play a role in the epidemic of type 2 diabetes, strategies to prevent diabetes or reduce its severity should consider optimizing sleep health in at-risk populations. Intervention studies demonstrating that treating sleep disturbances may help prevent diabetes or improve glycemic control are lacking but have become an area of intense research.

INTRODUCTION

Humans spend approximately one-third of their lifetime sleeping. Sleep is viewed as a state of energy conservation and replenishment of energy stores. Normal human sleep is composed of rapid-eye-movement (REM) sleep and stages N1, N2, and N3 of non-REM (NREM) sleep. N3 is the deepest stage of NREM sleep and is also known as slow wave sleep (SWS). Oscillations between REM and NREM stages occur roughly every 90 minutes and repeat four to six times throughout the night.

This important physiologic process is controlled in part by an internal circadian clock and in part by a homeostatic mechanism where the pressure for sleep increases in proportion to the duration of prior wakefulness. Human behavior may override these physiologic control mechanisms, resulting in alterations of sleep duration, quality, or timing. Increasing prevalence of sleep disorders, such as obstructive sleep apnea (OSA), parallels the increase in obesity rates. According to the definition proposed by the National Heart, Lung, and Blood Institute, "sleep deficiency" occurs when an individual has insufficient sleep, poor sleep, a diagnosed sleep disorder, or abnormal timing of sleep (1). Multiple reviews (2,3,4) have elected to use the term "sleep disturbances" to designate insufficient or excessive sleep duration,

poor self-reported sleep quality, or a diagnosed sleep disorder, such as OSA. Experimental and epidemiologic data have linked insufficient sleep duration, abnormal sleep timing, and poor sleep quality to insulin resistance, increased risk of obesity, and diabetes. In patients with type 2 diabetes, sleep disturbances may adversely affect glycemic control.

OSA is well recognized as a risk factor for insulin resistance, independent of the degree of obesity, and is highly prevalent in patients with type 2 diabetes. OSA is a complex disorder involving intermittent hypoxia, sleep fragmentation, low amounts of SWS, and reduced total sleep time. Well-documented studies in animal models indicate that intermittent hypoxia is one of the mechanisms linking OSA to abnormal glucose metabolism. Whether treatment of OSA with continuous positive airway pressure (CPAP) may improve glucose metabolism remains controversial.

Pregnant women are a special population that may be particularly vulnerable to adverse effects of abnormal sleep. Sleep disturbances in pregnancy are associated with adverse maternal and fetal outcomes, including gestational diabetes, preeclampsia, and premature delivery. Because of these potential complications, the body of literature on this topic has grown rapidly.

Besides sleep duration, sleep quality, and OSA, emerging evidence from well-controlled clinical research studies has revealed that conditions where the behavioral sleep/wake cycle is not in synchrony with the biological circadian timing system, so-called "circadian misalignment," may result in impaired glucose tolerance (IGT). In cross-sectional analyses, circadian misalignment is associated with increased diabetes risk in nondiabetic individuals and with poor glycemic control in patients with established type 2 diabetes.

This chapter summarizes the evidence linking different types of sleep disturbances to abnormal glucose metabolism, including insufficient sleep, sleep fragmentation, OSA, and circadian misalignment. Potential underlying mechanisms are discussed, as well as findings from prospective and crosssectional epidemiologic studies and from intervention studies.

INSUFFICIENT SLEEP

While it is important to note that the amount of sleep that optimizes physical and mental health is an individual characteristic that tends to decrease with age, it is generally considered that 7-8 hours of sleep nightly is adequate for most adults (5). Partly due to changes in work and social demands, sleep duration in the United States has been declining (6). In data from 110,441 adults participating in the National Health Interview Surveys 2004–2007, the prevalences of selfreported short sleep duration were 7.8% for sleeping ≤5 hours and 20.5% for sleeping 6 hours per day (7). In 2009, >30% of U.S. men and women age 30-65 years reported sleeping <6 hours per night on workdays (6).

Insufficient sleep has been linked to reduced insulin sensitivity and increased risk of type 2 diabetes, both in laboratory studies in healthy humans and in epidemiologic studies. A causative role of partial sleep restriction in promoting alterations in glucose metabolism was first established in 1999 (8). Intravenous glucose tolerance testing (IVGTT) following sleep restriction to 4 hours per night for five nights resulted in a 24% decrease in insulin sensitivity (Figure 25.1), as well as a 30% decrease in the acute insulin response to intravenous glucose (8,9). Moreover, an increase in the HOMA (homeostatic model assessment, an index of insulin resistance) response to breakfast was observed on the following

FIGURE 25.1. Reduction in Insulin Sensitivity as Assessed by Intravenous Glucose Tolerance Test From Laboratory Studies Involving Sleep Restriction, Sleep Fragmentation, and Intermittent Hypoxia

h, hour; SWS, slow wave sleep.

SOURCE: References are listed within the figure.

day and occurred despite similar insulin secretory responses. These findings indicated that a state of sleep debt caused a decrease in insulin sensitivity that was not compensated by increased insulin release, leading to a more than 40% decrease in glucose tolerance compared to the fully rested condition.

Several subsequent, well-controlled experimental studies in healthy human subjects involving sleep restriction to 4–5.5 hours per night for 5–14 nights and assessments of glucose metabolism by IVGTT or euglycemic-hyperinsulinemic clamp have confirmed a reduction of insulin sensitivity ranging from 16% to 32% in response to sleep restriction without simultaneous increases in insulin levels, resulting in reduced glucose tolerance and an increased risk of diabetes (Figure 25.1) (10,11,12,13). A few studies that included assessments after sleep recovery found that the metabolic disturbances induced by sleep restriction were at least partially reversible (improved glucose tolerance as assessed by IVGTT (8) and a reduction in the insulin-to-glucose ratio (14)). Further, 2 weeks of sleep extension in habitual short sleepers resulted in changes in indices of fasting insulin sensitivity that were correlated with the amount of sleep extension, with those obtaining more sleep having the largest increases in insulin sensitivity (15). Lastly, a small study indicated that three nights of in-laboratory "catch-up" sleep in men with chronic, repetitive, lifestyle-driven sleep restriction led to improved insulin sensitivity as assessed by a 2-hour frequently sampled glucose tolerance test (16).

Multiple cross-sectional epidemiologic studies have indicated that self-reported short sleep duration (usually <6 hours per night) is associated with increased odds of prediabetes and diabetes. Relevant population-based studies examining associations between these conditions of abnormal glucose tolerance and self-reported short sleep duration in the United States and Canada are listed in Tables 25.1 and 25.2. Importantly, 12 of 16 large prospective studies with a follow-up

duration of 2-32 years have observed that short sleep duration is associated with an increased risk of incident diabetes (Table 25.3) (17,18,19,20,21,22,23,24,25, 26,27,28,29,30,31,32). All five studies conducted in the United States, including the Nurses' Health Study (17), National Health and Nutrition Examination Survey (NHANES) I (20), NIH-AARP Diet and Health Study (24), Massachusetts Male Aging Study (25), and Millennium Cohort by the Department of Defense (28), have found the associations. A meta-analysis including 11 of these 16 studies (total 447,124 participants) concluded that short sleep (\leq 5–6 hours per night) predicts the development of type 2 diabetes with a relative risk (RR) of 1.33 (95% confidence interval [CI] 1.20–1.48) (21). In addition, multiple studies, the majority of which were conducted in the United States, have found that long sleep duration (>8–9 hours per night) also predicts incident diabetes (Table 25.3) (17,20,22,24,25,30), with a meta-analysis indicating a pooled relative risk of 1.48 (33). This suggests a U-shaped

relationship between sleep duration and risk of incident diabetes. The main limitation of these studies is that sleep duration was self-reported.

Only a few studies have examined the impact of insufficient sleep on glycemic control in patients with established type 2 diabetes. A questionnaire survey study of 161 African Americans with type 2 diabetes found that 3 hours of perceived sleep debt per day (i.e., a self-report of insufficient sleep duration) predicted a glycosylated hemoglobin (A1c) level of 1.1% above the median (34). The magnitude of this difference is comparable to the effect size of several U.S. Food and Drug Administrationapproved diabetes medications. A U-shaped relationship may exist between sleep duration and glycemic control, with excessive sleep duration predicting poorer glycemic control. A large cross-sectional study of 4,870 Japanese participants revealed higher A1c levels in patients with self-reported sleep duration < 5.5 hours per night and ≥8.5 hours per night

TABLE 25.1. Studies Exploring the Relationship Between Self-Reported Sleep Duration and Dysglycemia

STUDY, YEARS (REF.)	POPULATION	SAMPLE SIZE	STUDY DESIGN	OUTCOME	RESULTS
NHANES, 2005–2006, 2007–2008 (44)	Age ≥30 years	2,285	Cross-sectional	Clinically identified prediabetes, defined as FPG 100–125 mg/dL, plus physician diagnosis of prediabetes	Sleeping \leq 5 h/night was associated with clinically identified prediabetes, OR 2.06 (95% Cl 1.00–4.22), compared to sleeping 7 h/night.
					Sleeping \geq 9 h/night was not associated with prediabetes.
Sleep Heart Health Study, 1995–1998	Mean age 70.2 years	1,486	Cross-sectional	IGT, defined as 2-hour glucose value 140–199 mg/dL,	Sleeping \leq 5 h/night was not associated with IGT.
(374)				post 75 g glucose load	Sleeping 6 h/night was associated with IGT, OR 1.58 (95% CI 1.15–2.18).
					Sleeping \geq 9 h/night was associated with IGT, OR 1.88 (95% CI 1.21–2.91).
Western New York Health Study, 1996– 2004 (375)	Age 35–79 years	1,455 (91 cases; 272 controls)	Nested case- control within a 6-year longitudinal cohort	IFG at a follow-up examination, defined as FPG 100–125 mg/dL	Sleeping <6 h/night was associated with development of IFG, OR 3.0 (95% CI 1.05–8.59).
					Sleeping >8 h/night was not associated with IFG.
Quebec Family Study, 1989–2001 (30)	French Canadians from Quebec area, age 21–64 years	276	Longitudinal 6-year follow-up	Type 2 diabetes, defined as FPG ≥126 mg/dL or 2-hour glucose ≥200 mg/dL, post 75 g glucose	Sleeping ≤ 6 h/night was associated with type 2 diabetes/IGT, OR 2.78 (95% CI 1.61-4.12).
				challenge	Sleeping ≥9 h/night was associated with
				IGT, defined as 2-hour glucose value 140–199 mg/dL, post 75 g glucose load	type 2 diabetes/IGT, OR 2.54 (95% Cl 1.42–3.53).

Conversions for glucose values are provided in Diabetes in America Appendix 1 Conversions. CI, confidence interval; FPG, fasting plasma glucose; h, hour; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; NHANES, National Health and Nutrition Examination Survey; OR, odds ratio.

SOURCE: References are listed within the table

STUDY, YEARS (REF.)	POPULATION	SAMPLE SIZE	OUTCOME	RESULTS
National Sleep in America Survey, 2003 (46)	Age 55–84 years	1,506	Self-reported diabetes	Sleeping <6 h/night was not associated with diabetes.
National Health Interview Survey-Sample Adult Files (NHIS-SAF), 2004–2007	Age ≥18 years; mean age 46 years	110,441	Self-reported diabetes	Compared to sleeping 7 h, sleeping \leq 5 h and 6 h were associated with diabetes, OR 1.19 (95% Cl 1.07–1.33) and OR 1.09 (95% Cl 1.01–1.19), respectively.
(7)				Sleeping 8 h and \geq 9 h were associated with diabetes, OR 1.12 (95% Cl 1.03–1.20) and OR 1.25 (95% Cl 1.13–1.38), respectively.
NHANES, 2007–2008 (376)	Mean age 49.3 years	5,649	Self-reported diabetes	Sleeping <5 h/night was associated with self-reported diabetes, OR 1.76 (95% Cl 1.13–2.74).
				Sleeping \geq 9 h/night was not associated with self-reported diabetes.
National Health Interview Survey, 2004–2011 (377)	Mean age 50.6 years	age 50.6 130,943 (13% non-Hispanic black)	Self-reported diabetes	In non-Hispanic whites, sleeping <7 h/night and >7 h/night were associated with diabetes, PR 1.49 (95% CI 1.40–1.58) and PR 1.32 (95% CI 1.25–1.40), respectively.
				In non-Hispanic blacks, corresponding PRs were 1.21 (95% Cl 1.09–1.34) and 1.11 (95% Cl 1.00–1.23), respectively.
				Racial/ethnic differences in short sleep-diabetes association were nonsignificant after adjusting for socioeconomic status.
Behavioral Risk Factor	14 U.S. states,	54,269	Self-reported	Sleeping ≤6 h/day was associated with diabetes, OR 1.25 (95% Cl 1.12–1.40).
2010 (378)	age ≥45 years		diabetes	Sleeping ${\geq}10$ h/day was associated with diabetes, OR 1.79 (95% Cl 1.46–2.20).
National Health Interview Survey, 2010 (379)	Age 18–85 years	29,818 (15% non-Hispanic	Self-reported diabetes	In non-Hispanic whites, sleeping \leq 5 h or \geq 9 h was associated with diabetes, OR 1.87 (95% CI 1.57–2.24) and OR 2.33 (95% CI 1.98–2.73), respectively.
		black)		In non-Hispanic blacks, the corresponding ORs were 1.66 (95% Cl 1.19–2.30) and 1.68 (95% Cl 1.21–2.33), respectively.
				Greater diabetes risk was seen in non-Hispanic black short and long sleepers compared to non-Hispanic whites.

TABLE 25.2. Cross-Sectional Studies Exploring Associations Between Self-Reported Sleep Duration and Diabetes

CI, confidence interval; h, hour; NHANES, National Health and Nutrition Examination Survey; OR, odds ratio; PR, prevalence ratio. SOURCE: References are listed within the table.

TARI F 25 3 🖡	Prosportivo Studios	Evoloring the Relat	ionshin Ratwaan (Salt-Ranartad Slaar	Duration and Incident Diabetes
INDEE 23.3. I		LAPIOI Ing the Neidt			Duration and melacit Diabetes

STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	OUTCOME AND ASSESSMENT	RESULTS
Nurses' Health Study, 1986–1996 (17)	Age 30–55 years	70,026	10	Questionnaire: symptoms of diabetes, plus FPG ≥140 mg/dL or random glucose ≥200 mg/dL, two elevated glucose levels on two occasions (fasting or random), or use of hypoglycemic medication	Sleeping \leq 5 h/day was associated with increased diabetes risk, RR 1.57 (95% CI 1.28–1.92), but became nonsignificant after adjusting for BMI. Sleeping \leq 5 h/day was associated with increased risk of symptomatic diabetes, even after adjusting for BMI, RR 1.34 (95% CI 1.04–1.72). Sleeping \geq 9 h/day was associated with diabetes risk, RR 1.29 (95% CI 1.05–1.59).
Insulin Resistance Atherosclerosis Study, 1992–1999 (18)	Multiethnic: non-Hispanic white, African American, and Hispanic; age 40–69 years	900	5	Report of using diabetes medications OGTT in those not taking diabetes medication— diabetes defined as 2-hour glucose value ≥200 mg/dL	Sleeping ≤7 h/night was associated with diabetes risk, OR 2.36 (95% Cl 1.21–3.79) in non-Hispanic whites and Hispanics, but not in African Americans. Sleeping ≥9 h/night was not associated with diabetes risk.
Sweden, 1969–2001 (19)	Mean age 46.8 years	1,462	32	Report of physician diagnosis of diabetes or use of medication, FPG ≥140 mg/dL on two separate occasions, or diagnosis documented in death certificate	No association between sleep duration (number of hours or quintiles of long versus short sleep) and diabetes risk.
NHANES I, 1982– 1984, 1986–1987, and 1992 (20)	Mean age 56.1 years	8,992	8–10	Report of diabetes diagnosis by physician, hospital diagnosis, or cause of death	Sleeping ≤5 h/day was associated with increased diabetes risk, OR 1.47 (95% Cl 1.03–2.09). Sleeping ≥9 h/day was associated with diabetes risk, OR 1.52 (95% Cl 1.06–2.18).

Table 25.3 continues on the next page.

STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	OUTCOME AND ASSESSMENT	RESULTS
The 45 and UP Study, 2007–2010 (21)	Australian prospective cohort,	241,949	2–3	Hospital admissions data and mortality data	Sleeping <6 h/day was associated with increased diabetes risk, HR 1.29 (95% CI 1.08–1.53).
	years				Sleeping \geq 9 h/day was not associated with diabetes risk.
Finnish Diabetes Prevention Study,	Mean age 55.2 years	522	7	OGTT with FPG ≥140 mg/dL or 2-hour glucose value ≥200	Sleeping \leq 6.5 h/day was not associated with diabetes risk.
1993–2000 (22)				mg/dL	Sleeping 9–9.5 h and \geq 10 h were associated with diabetes risk in the control group, HR 2.29 (95% Cl 1.38–3.80) and HR 2.74 (95% Cl 1.67–4.50), respectively. These sleep durations were not associated with diabetes risk in the lifestyle intervention group.
European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study, Germany, 2004–2007 (23)	Age 35–65 years	23,620	7.8	Report of diabetes diagnosis verified by chart review	No associations were found between sleep duration and diabetes risk.
National Institutes of Health-AARP Diet and Health Study,	Age 50–71 years	174,542	3–10	Report of diabetes diagnosis by physicians	Sleeping <5 h and 5–6 h were associated with diabetes risk, OR 1.46 (95% CI 1.31–1.63) and OR 1.11 (95% CI 1.06–1.16), respectively.
1996–2006 (24)					Sleeping \geq 9 h was associated with diabetes risk, OR 1.11 (95% CI 0.99–1.24).
Massachusetts Male Aging Study, 1987– 2004 (25)	Age 40–70 years	1,139	15–16	Report of diabetes diagnosis by physician	Sleeping ≤5 h was associated with diabetes risk, RR 1.95 (95% CI 0.95–4.01). This became nonsignificant after adjusting for testosterone level.
					Sleeping >8 h was associated with diabetes risk, RR 3.12 (95% Cl 1.53–6.37), and remained significant after adjusting for testosterone.
High-risk and Population Strategy for Occupational Health Promotion Study (HIPOP-OHP), 1999–2004 (26)	Mean age 38.2 years	6,509	4.2	Report of diabetes diagnosis or using medication, FPG ≥140 mg/dL, or random glucose ≥200 mg/dL	No associations were found between sleep duration and diabetes risk.
Sweden, 1983–1995 (27)	Age 45–65 years	2,663	12	Questionnaire ascertained by using two questions	Sleeping \leq 5 h was associated with diabetes risk in men only, RR 2.8 (95% Cl 1.1–7.3).
					No associations were found between sleep duration and diabetes risk in women.
Millennium Cohort by the Department of Defense, 2001–2007 (28)	Mean age 36.7 years	47,093	6	Report of diabetes diagnosis	Sleeping <5 h and 5 h were associated with increased diabetes risk, OR 2.04 (95% Cl 1.49–2.81) and OR 1.46 (95% Cl 1.15–1.84), respectively.
(20)					Sleeping \geq 8 h was not associated with diabetes risk.
Japan, 2003–2008 (29)	Government employees in Sapporo, Japan, age 35–55 years	3,570	3–5	Having been prescribed diabetes medication or FPG ≥126 mg/dL	Sleeping \leq 5 h was associated with diabetes risk, OR 5.37 (95% Cl 1.38–20.91), in those without family history of diabetes.
					No association was found in those with family history of diabetes.
Quebec Family Study, 1989–2001 (30)	Mean age 38.6 years	276	6	Type 2 diabetes, defined as FPG ≥126 mg/dL, 2-hour glucose value ≥200 mg/dL	Sleeping ≤ 6 h was associated with type 2 diabetes/ IGT risk, RR 2.78 (95% Cl 1.61–4.12).
				after OGTT, or use of insulin or oral hypoglycemic agents	Sieeping ≥9 h was associated with type 2 diabetes/ IGT, RR 2.54 (95% CI 1.42–3.53).
				IGT, defined as 2-hour glucose value ≥140 mg/dL in those not meeting diabetes criteria	

TABLE 25.3. (continued)

TABLE 25.3. (continued)

STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	OUTCOME AND ASSESSMENT	RESULTS
Spain, 1997–2010 (31)	Population-based study, age 18–65 years	1,145	11	Fasting and 2-hour glucose values from OGTT	Sleeping \leq 7 h compared to \geq 8 h was associated with diabetes at 6-year follow-up, OR 1.96 (95% Cl 1.10–3.50). The effect was not independent of obesity.
					No association was found at 11-year follow-up.
					Sleeping ≥ 10 h versus 7–9 h was not associated with diabetes.
Study by the Niigata Association of Occupational Health	Occupational health participants, Japan, age 18–83 years	38,987	8	FPG \geq 126 mg/dL, self- reported diabetes diagnosis, or A1c level \geq 6.5%	Sleeping <5.5 h and 5.5–<6.5 h were associated with diabetes, OR 1.53 (95% Cl 1.19–1.97) and OR 1.25 (95% Cl 1.10–2.42), respectively.
in Niigata, Japan, 1999–2012 (32)					The effect was found mainly in those age ≤45 years, but not age ≥60 years.

Conversions for A1c and glucose values are provided in *Diabetes in America Appendix 1 Conversions*. A1c, glycosylated hemoglobin; BMI, body mass index; CI, confidence interval; FPG, fasting plasma glucose; h, hour; HR, hazard ratio; IGT, impaired glucose tolerance; NHANES, National Health and Nutrition Examination Survey; OGTT, oral glucose tolerance test; OR, odds ratio; RR, relative risk.

SOURCE: References are listed within the table.

compared to those with 6.5–7.4 hours per night (35). A study using data from the Korean National Health and Nutrition Examination Survey found a U-shaped relationship between sleep duration and fasting glucose and A1c values (36), while another study of 18,121 participants in China found that only long sleep (>9 hours) was significantly associated with poorer glycemic control (37). These findings from large studies based on self-reported sleep duration were not confirmed in the limited number of studies where sleep was measured using an objective method, such as actigraphy. Indeed, in these studies (total 91 participants), sleep duration was not found to be correlated with glycemic control in patients with type 2 diabetes (38,39). This contradiction between self-reported and objectively measured sleep duration on glycemic control could be due to a very small number of participants in the latter studies, and more research is needed to confirm the findings. Taken together, the epidemiologic evidence suggests a role of self-reported sleep duration on glycemic control in type 2 diabetes.

Despite well-documented evidence for a causal relationship between sleep insufficiency and glucose metabolism, not a single interventional study to date has explored the role of sleep extension in diabetes prevention or treatment.

SLEEP FRAGMENTATION, SHALLOW SLEEP, AND INSOMNIA

Sleep fragmentation is a hallmark of poor sleep quality that can be objectively assessed by low sleep efficiency (a ratio of time spent asleep versus time in bed) or by a long cumulated "wake time after sleep onset [WASO]" by polysomnography (PSG), the "gold standard" diagnostic test used to study sleep patterns and circadian rhythms in the medical setting. (PSG is described in more detail in the section *Obstructive Sleep Apnea: Disease Definition and Diagnosis.*) Actigraphy recordings, from a device that is worn on the wrist for a week or more and is less cumbersome, also provide good estimations of sleep efficiency.

Even in the absence of sleep fragmentation, shallow sleep, as reflected polygraphically from PSG by a low amount of deep NREM sleep (also known as SWS), has also been shown to be associated with adverse metabolic consequences. A laboratory study of healthy volunteers demonstrated that SWS suppression without changes in total sleep duration results in abnormal glucose metabolism. Suppression of SWS using acoustic stimuli for three nights resulted in a 25% decrease in insulin sensitivity as assessed by minimal model analysis of a frequently sampled IVGTT (40) without a compensatory increase in insulin secretion as assessed by the acute insulin response to intravenous glucose (Figure 25.1) (41). The acoustic stimuli were calibrated as to not induce full arousals and thus not affect sleep efficiency. In a similar study, sleep fragmentation by acoustic stimuli and mechanical vibrations for two full nights was associated with a 25% decrease in insulin sensitivity (Figure 25.1) (42). The experimental manipulation resulted in a marked decrease of SWS and also of other sleep stages.

Insomnia is one of the manifestations of subjective poor sleep quality. According to Diagnostic and Statistical Manual of Mental Disorders-V criteria, insomnia symptoms include one or more of the following: a report of difficulty initiating sleep, difficulty maintaining sleep, earlymorning awakening with inability to return to sleep, or a report of unrefreshing sleep (43). Multiple cross-sectional studies in the United States have found a significant association between poor sleep quality or insomnia symptoms and prediabetes or diabetes (Table 25.4) (44,45,46,47,48). To date, 11 of 12 prospective studies have linked poor sleep quality to incident diabetes (Table 25.5) (19,26,27,28,29,49,50,51,52,53,54,55). One of the largest studies, conducted in U.S. military personnel, confirmed the association between trouble sleeping and diabetes risk (odds ratio [OR] 1.21, 95% CI

STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	OUTCOME	RESULTS
NHANES, 2005–2006, 2007–2008 (44)	Age ≥30 years	2,285	Clinically identified prediabetes, defined as FPG 100–125 mg/dL, plus physician diagnosis of prediabetes	Trouble maintaining sleep ≥5 times/month was associated with clinically identified prediabetes, OR 3.50 (95% Cl 1.30–9.45). Waking up too early ≥5 times/month was associated with clinically identified prediabetes, OR 2.69 (95% Cl 1.21–5.98).
NHANES, 2009–2010 (45)	Age >40 years	3,668	Diabetes, defined as FPG >125 mg/dL, A1c >6.4%, or 2-hour glucose >199 mg/dL, post 75 g glucose challenge	Sleep disturbance (i.e., reported to health professional that they had trouble sleeping) was associated with diabetes, OR 1.36 (95% Cl 1.06–1.73).
National Sleep in America Survey, 2003 (46)	Age 55–84 years	1,506	Self-reported diabetes	Insomnia symptoms were not associated with diabetes.
Detroit, Michigan, NR (47)	Community- based sample, age 18–65 years	3,282 (621 had PSG)	Self-reported diabetes	Insomnia symptoms were associated with diabetes, OR 1.40 (95% CI 1.05–2.00). Sleep efficiency obtained from PSG was not different in those with or without diabetes.
Penn State Cohort, NR (48)	Age ≥20 years	1,741	Diabetes, defined as FPG ≥126 mg/dL or use of medication	Chronic insomnia for ≥1 year was associated with diabetes, OR 1.84 (95% CI 1.05–3.20). The risk was highest in those with PSG-measured sleep duration ≤5 h, OR 2.95 (95% CI 1.24–7.05). Poor sleep (difficulty falling asleep or staying asleep, early final awakening, or unrefreshing sleep) without insomnia complaint was not associated with diabetes.

TABLE 25.4. Cross-Sectional Studies Exploring Associations Between Sleep Quality and Prediabetes or Diabetes

Conversions for A1c and glucose values are provided in *Diabetes in America Appendix 1 Conversions*. A1c, glycosylated hemoglobin; CI, confidence interval; FPG, fasting plasma glucose; NHANES, National Health and Nutrition Examination Survey; NR, not reported; OR, odds ratio; PSG, polysomnogram. SOURCE: References are listed within the table.

TABLE 25.5. Prospective Studies Exploring the Relationship Between Sleep Quality or Insomnia Symptoms and Incident Prediabetes or Diabetes

STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	SLEEP ASSESSMENT	OUTCOME AND ASSESSMENT	RESULTS
Stockholm Diabetes Prevention Program, Sweden, 1992– 2006 (49)	Mean age 47 years	5,227	8–10	Reported sometimes or frequent insomnia	Prediabetes, defined as FPG 110–125 mg/dL or 2-hour glucose value 140–199 mg/dL after 75 g OGTT or both Diabetes, defined as FPG ≥126 mg/dL or 2-hour glucose value ≥200 mg/dL	Men with high insomnia symptoms had increased risk of prediabetes/diabetes compared to low insomnia symptoms, OR 2.0 (95% CI 1.2–3.4). No association was found in women.
Japan, 1984–1992 (50)	Male employees of electrical plant	2,649	8	Reported difficulty initiating or maintaining sleep	FPG ≥144 mg/dL or 2-hour glucose value ≥200 mg/dL after 75 g OGTT	High frequency of difficulty initiating sleep (often or almost every day) was associated with diabetes, HR 2.98 (95% Cl 1.36–6.53). Difficulty maintaining sleep was associated with diabetes, HR 2.23 (95% Cl 1.08–4.61).
Germany, 1984– 1998 (51)	Population- based cohort in Southern Germany, age 25–74 years	8,269	7.5	Reported difficulty initiating or maintaining sleep	Self-reported diabetes diagnosis and verified by chart review	Difficulty maintaining sleep was associated with diabetes, HR 1.60 (95% Cl 1.05–2.45) in men and HR 1.98 (95% Cl 1.20–3.20) in women. Difficulty initiating sleep was not associated with diabetes.

Table 25.5 continues on the next page.

TABLE 25.5. (continued)

STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	SLEEP ASSESSMENT	OUTCOME AND ASSESSMENT	RESULTS
Malmo Preventive Project, Sweden, 1974–1996 (52)	Age 35–51 years	6,599	14.8	Reported difficulty initiating sleep and regular use of hypnotic drugs	Self-reported diabetes diagnosis or use of medication. A subgroup of 1,551 subjects received a fasting blood test (diabetes diagnosed when fasting whole blood glucose was ≥ 6.1 mmol/L).	Difficulty falling asleep or regular use of hypnotics was associated with diabetes, OR 1.52 (95% CI 1.05–2.20).
Norwegian HUNT study, 1984–2008 (53)	Mean age 43.5 years	53,394	11–22	Symptoms of insomnia per DSM-IV criteria	Type 2 diabetes: report of diabetes diagnosis with verification by another interview on history and treatment Autoimmune diabetes: GAD Ab and C-peptide level	Insomnia symptoms were associated with type 2 diabetes in men, HR 1.25 (95% CI 1.08–1.44), but not in women. Insomnia symptoms were associated with autoimmune diabetes in men, HR 1.83 (95% CI 1.05–3.20), but not in women.
GAZEL Cohort study, 1990–2009 (54)	Employees of the French national electric and gas company, mean age 45 years	16,989	19	Questionnaire using Nottingham Health Profile*	Self-report of diabetes diagnosis	Sleep disturbances were associated with diabetes, both in men, HR 1.59 (95% Cl 1.15–2.20), and women, HR 2.18 (95% Cl 1.37–3.45).
High-risk and Population Strategy for Occupational Health Promotion Study (HIPOP-OHP), 1999–2004 (26)	Mean age 38.2 years	6,509	4.2	Reported difficulty initiating or maintaining sleep	Report of diabetes diagnosis or using diabetes medication or FBG ≥126 mg/dL or random plasma glucose ≥200 mg/dL	Difficulty initiating sleep was associated with diabetes, HR 1.42 (95% Cl 1.05–1.91) for a medium frequency and HR 1.61 (95% Cl 1.00–2.58) for a high frequency. Difficulty maintaining sleep was not associated with diabetes.
Sweden, 1983– 1995 (27)	Population- based study, age 45–65 years	2,663	12	Self-reported sleep duration, difficulty initiating or maintaining sleep	Self-reported diabetes diagnosis by questionnaire, ascertained by using two questions	Difficulty maintaining sleep was associated with diabetes in men, RR 4.8 (95% Cl 1.9–12.5), but not in women. Difficulty initiating sleep was not associated with diabetes.
Millennium Cohort by the Department of Defense, 2001–2007 (28)	Mean age 36.7 years	47,093	6	Reported trouble falling asleep or staying asleep	Self-reported diabetes diagnosis	Trouble sleeping was associated with diabetes, OR 1.21 (95% Cl 1.03–1.42).
Japan, 2003–2008 (29)	Government employees, age 35–55 years	3,570	3–5	Poor sleep quality†	Having been prescribed diabetes medication and/or FPG ≥126 mg/dL	Awakening during the night and unsatisfactory overall quality of sleep were associated with diabetes, OR 5.03 (95% Cl 1.43–17.64) and OR 6.7 (95% Cl 2.09–21.87), respectively, in those without family history of diabetes. No associations were found in those with family history of diabetes.
Hong Kong, 2003–2010 (55)	Population- based study of Hong Kong Chinese, mean age 46.3 years	Non-restorative sleep: 2,291	5	Non-restorative sleep (morning unfreshness after getting up ≥3 times/week over the past 12 months)	Self-reported diabetes diagnosis	Non-restorative sleep was associated with diabetes, OR 2.63 (95% Cl 1.23–5.63).

Table 25.5 continues on the next page.

ME AND

occasions or more

	inucuj				
STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	SLEEP ASSESSMENT	OUTCO ASSE
Sweden, 1968– 2001 (19)	Cohort study of women, mean age 46.8 years	1,462	32	Sleep problems, defined as having reported sleep problems and/or	Self-reporte diagnosed b use of diabe FPG ≥126 n

TABLE 25.5. (continued)

Self-reported of diabetes Sleep complaints or use of sleep medications were not associated with use of diabetes therapy or FPG ≥126 mg/dL on two

RESULTS

Conversions for A1c and glucose values are provided in Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin; CI, confidence interval; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders-IV; FBG, fasting blood glucose; FPG, fasting plasma glucose; GAD Ab, glutamic acid decarboxylase antibody; HR, hazard ratio; OGTT, oral glucose tolerance test; OR, odds ratio; RR, relative risk.

having consulted

a doctor for sleep problems and/or hospital admission for this reason, use of sleep medication

* Three or more of the following: I take a tablet to help me sleep; I lie awake most of the night; I sleep badly at night; It takes me a long time to fall asleep; or I wake up in the early hours of the morning.

† Two or more of the following: problems with sleep induction, awakening during the night, final awakening earlier than desired, insufficient sleep, or overall poor sleep quality. SOURCE: References are listed within the table.

1.03–1.42) (28). Meta-analyses, pooling five of these studies, revealed that selfreported difficulty in maintaining sleep predicted the development of diabetes with a relative risk of 1.84 (total 24,192 participants), while self-reported difficulty in initiating sleep was associated with an increased relative risk of 1.57 (total 18,213 participants) (33). By comparison, estimates of the relative risk of developing diabetes associated with a family history of type 2 diabetes have ranged from 1.7 to 2.3 (56,57,58,59,60), with only one study in South African blacks estimating the relative risk at a substantially higher value of 4.1 (61). Thus, the relative risk of incident diabetes in individuals reporting insufficient sleep or difficulty initiating or maintaining sleep is of the same order of magnitude as the relative risk imparted by having a family history of type 2 diabetes, usually considered as one of the strongest predictors of diabetes risk. Interestingly, one study also found an association of poor sleep quality and an increased risk of autoimmune diabetes (53).

Only a few cross-sectional studies have examined the relationship between sleep quality and glycemic control in patients with type 2 diabetes. The largest study in the United States included 161 African American patients and found that in those with at least one diabetic complication (i.e., retinopathy, neuropathy, nephropathy, cardiovascular, or cerebrovascular diseases), there was a graded relationship between glycemic control as assessed by A1c and the score on the Pittsburgh Sleep Quality Index (PSQI) (34). Specifically, a 5-point increase in PSOI score predicted an elevation of A1c level of 1.9% above the median. Another cross-sectional study of 46 Taiwanese patients found an association between poor glycemic control (defined as A1c ≥7% [≥53 mmol/mol]) and poor sleep quality (PSQI \geq 8), as well as poor sleep efficiency (62). Similarly, poor sleep quality as assessed by questionnaire in 551 Chinese type 2 diabetes patients found an association between lower sleep guality and higher insulin resistance as measured by HOMA-IR (63).

A few studies have utilized objective measurement of sleep quality. Knutson et al. reported a cross-sectional association between an objective estimation of sleep quality and markers of glucose metabolism in participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study (38). The sleep parameters were derived from actigraphy recordings, which have been shown to be well correlated with those obtained by PSG (64). While there were no correlations between sleep and metabolic variables in nondiabetic participants, sleep fragmentation and insomnia were associated with significantly higher fasting glucose, insulin, and HOMA levels in diabetic participants (38). Another study conducted in Italy, involving 47 patients with type 2 diabetes, reported that

A1c correlates inversely with sleep efficiency as measured by actigraphy (39). Interestingly, in the NHANES 2005–2006, a study of 958 adults with prediabetes (fasting glucose 100–125 mg/dL [5.55-6.94 mmol/L], 2-hour oral glucose tolerance values of 140-199 mg/dL [7.77–11.04 mmol/L], or A1c 5.7%-6.4% [39-46 mmol/mol]) did not find a relationship between insomnia symptoms and A1c levels (65). However, those with insomnia symptoms were less active as measured by steps walked during the 2-day recordings. The findings suggest that insomnia in adults with prediabetes may be a barrier to adopting an active lifestyle.

Despite the link between poor sleep quality and diabetes risk or poor glycemic control in patients with type 2 diabetes, there has not been a single study so far exploring whether improving sleep quality may be a viable strategy to prevent diabetes or reduce its severity.

PATHWAYS INVOLVED IN THE ADVERSE METABOLIC IMPACT OF INSUFFICIENT SLEEP AND POOR SLEEP OUALITY

Laboratory studies in healthy humans have provided evidence for the implication of multiple pathways in the link between reduced sleep duration and/or quality, insulin resistance, and hyperglycemia (Figure 25.2) (2).

Decreased Brain Glucose Utilization During Waking Hours

The brain utilizes glucose in an insulinindependent manner and is responsible for at least 50% of total glucose utilization in the fasting state. The rate of cerebral glucose metabolism as measured by positron emission tomography and ¹⁸Fluorine-2-deoxyglucose following a 24-hour period of total sleep deprivation has been found to be significantly decreased, especially in several cortical and subcortical areas (66). This is in agreement with the findings of a sleep debt study that revealed a 30% reduction in glucose effectiveness, an index of insulin-independent glucose disposal (8).

Increased Sympathetic Nervous System Activity

Sleep deprivation and sleep fragmentation lead to a shift in sympathovagal balance toward an increase in sympathetic nervous system activity as reflected by lower heart rate variability (8,41,42). Increased sympathetic nervous system activity has inhibitory effects on insulin secretion and promotes insulin resistance and the development of the metabolic syndrome (67,68). In addition, some studies have documented increased serum and urine norepinephrine and epinephrine concentrations following sleep deprivation (11,12,69). These hormones promote gluconeogenesis.

Alterations in the Hypothalamic-Pituitary-Adrenal Axis and Growth Hormone

Several studies observed an increase in salivary and serum cortisol levels following sleep deprivation, particularly in the evening and early part of the night, at the time when the levels are normally very FIGURE 25.2. Pathways Linking Sleep Insufficiency and Fragmentation to Abnormal Glucose Metabolism and Type 2 Diabetes

SOURCE: Reference 2, copyright © 2014 New York Academy of Sciences, reprinted with permission

low following the normal circadian pattern (8,12,70,71). In one study, there was no change in corticotropin (ACTH) level, suggesting an enhanced adrenal reactivity (70). Evening elevations of cortisol may promote morning insulin resistance (72). An increase in morning serum cortisol levels was also reported after sleep fragmentation (73). In a sleep debt study, growth hormone secretion was found to increase prior to sleep onset and to limit the amplitude of post-sleep onset growth hormone release (9). Prolonged nighttime exposure to growth hormone may promote hyperglycemia.

Increase in Systemic Inflammatory Response

Inflammatory responses to sleep deprivation have been reviewed in detail (74). Multiple studies have demonstrated increases in leukocyte and monocyte counts (75,76,77), as well as elevations in the levels of proinflammatory cytokines, including interleukin (IL)-1 beta, IL-6, IL-17, tumor necrosis factor (TNF)-alpha, and high sensitivity C-reactive protein (hsCRP) (13,78,79,80,81). Increased proinflammatory cytokines have been linked to insulin resistance (82). Some studies, however, did not observe an association between alterations in the circulating levels of some of these cytokines and sleep disturbances, possibly partly due to variability of baseline levels within the population, as well as timing of specimen collection relative to the circadian cycle (74).

Alterations in Appetite-Regulating Hormones and Increased Obesity Risk

Appetite-regulating hormones, including leptin, which is one of the satiety hormones, and ghrelin, which is a hunger hormone, have been studied in the context of sleep restriction experiments. The first study that assessed these changes involved two nights of 4 hours in bed versus two nights of 10 hours in bed in healthy, normal-weight young men (83). During sleep restriction, leptin decreased by 18% and ghrelin increased by 28%. These changes were associated with a 23% increase in hunger ratings and a 33% increase in appetite for carbohydraterich foods. More than 10 subsequent studies have explored these hormonal changes in response to sleep restriction with some variations in participants' characteristics (i.e., adiposity and sex distribution), severity of sleep restriction, blood sampling methodology, and dietary protocols (ad libitum food access or controlled caloric consumption) (84,85). Not surprisingly, since leptin levels are highly sensitive to energy balance and modulated by sex and adiposity,

the findings have been inconsistent, with decreased (83,86,87,88), unchanged (89,90), or increased (14,91,92,93) concentrations. However, most of the studies that utilized multiple blood samplings in normal-weight men under conditions of controlled food intake consistently revealed a reduction in leptin amplitude or mean levels, suggesting that the discrepancies may, at least in part, be due to modulation of leptin secretion by obesity, sex, and food intake. Whether the results obtained in short-term laboratory studies may be extrapolated to real-life conditions is debatable. In a field study of 80 obese adults, no associations were found between leptin levels and sleep duration or quality (94). In contrast, the Wisconsin Sleep Cohort Study (1,024 participants) found an association between reduced leptin levels. along with elevated ghrelin levels and increased body mass index (BMI), in those reporting sleeping 5 hours compared to 8 hours (95).

Multiple studies documented increased ghrelin levels along with increased hunger in response to partial sleep restriction (83,91,93), as well as increased caloric intake, mostly from snacks. Several studies have observed that the excessive caloric consumption was mostly from carbohydrate-rich foods, although increased intake of fat or of all macronutrients has also been reported (96,97,98,99,100). However, similar to the findings regarding leptin levels, not all studies observed increased ghrelin levels (11,97,101). Two studies utilizing functional magnetic resonance imaging revealed increased neuronal activity in certain brain areas involved in the reward system in response to presentation of food stimuli after total and partial sleep restriction (102,103). These imaging findings are consistent with a report showing an increase in the levels of circulating endocannabinoid 2-arachidonoylglycerol (2-AG) after three days of sleep restriction compared to normal sleep (89).

Since sleep restriction provides more wake time, it has been suggested that the caloric need of extended wakefulness may

counterbalance the increase in hunger and food intake. Several studies have addressed changes in energy expenditure following sleep restriction. Surprisingly, three independent studies failed to detect an increase in energy expenditure assessed by the doubly labeled water method in individuals who underwent experimental partial sleep restriction (96,97,98). However, when the subjects were confined to a calorimetry room in order to monitor minute-to-minute energy expenditure during normal sleep and total sleep deprivation (104), the caloric cost per hour of wakefulness under sedentary conditions compared to sleep averaged only 17 Kcal, suggesting that the stimulation of hunger and food intake far exceeds the caloric need of extended wakefulness. A study involving 5 days of partial sleep restriction, similar to a work week, under controlled laboratory conditions indeed observed that the approximate 5% increase in daily energy expenditure was overcompensated by energy intake, particularly at night, resulting in significant weight gain (99). Additionally, there is evidence that the sleepiness and fatigue associated with insufficient sleep may result in a reduction in voluntary physical activity (105,106).

Collectively, these changes in appetite regulation in favor of increased hunger and food intake without commensurate increase in energy expenditure place individuals at risk for obesity. These results are supported by multiple prospective studies that found a significant association between short sleep and greater weight gain in both adults and children (107,108,109,110).

Abnormal Adipocyte Function

Adipocytes play a pivotal role in the regulation of energy balance and appear to play an important role in the changes in energy balance in response to sleep restriction (111). Leptin is released primarily from subcutaneous fat depot in direct proportion to insulin-stimulated glucose uptake and total subcutaneous fat mass (112). Increased sympathetic nervous activity leads to stimulation of lipolysis and increased free fatty acids which could lead to insulin resistance (113). A randomized crossover trial of 4 days of sleep restriction (4.5 hours per night) versus 4 days of normal sleep (8.5 hours per night) in healthy, young, lean men studied under controlled conditions of caloric intake and physical activity showed an increase in nocturnal free fatty acid levels that was correlated with the reduction in insulin sensitivity (114). In addition, elevated levels of glucocorticoids facilitate visceral fat accumulation, increased lipolysis, and insulin resistance. Molecular mechanisms involved in insulin signaling in adipocytes collected from individuals who were sleep restricted were examined by Broussard et al. (10) in a subset of the participants in the randomized crossover study of 4 days with 4.5 hours in bed versus 8.5 hours in bed. Subcutaneous fat biopsy under restricted sleep conditions revealed a 30% reduction in the ability of insulin to increase levels of phosphorylated Akt (also known as protein kinase B), a crucial early step in the insulin signaling pathway, compared to during normal sleep conditions. This impaired cellular insulin sensitivity paralleled the decrease in total body insulin sensitivity as assessed by IVGTT.

In summary, a large body of evidence supports a causal relationship between sleep insufficiency and sleep fragmentation and alterations in multiple physiologic pathways, resulting in abnormal glucose metabolism, increased diabetes risk, and possibly contributing to poor glycemic control in individuals who have prediabetes or diabetes. Further research studies should explore whether optimizing sleep duration and quality will, in the long term, result in decreased diabetes risk or improved glycemic control in patients with established type 2 diabetes.

PATHWAYS INVOLVED IN THE ADVERSE METABOLIC IMPACT OF LONG SLEEP DURATION

In contrast to short sleep duration, the mechanisms linking long sleep duration and abnormal glucose metabolism are poorly understood. One of the limitations is that most, if not all, studies documenting an adverse metabolic impact of long sleep (typically >8–9 hours per night) have been based on

OBSTRUCTIVE SLEEP APNEA

DISEASE DEFINITION AND DIAGNOSIS

OSA is a common sleep disorder that is characterized by recurrent episodes of complete or partial collapse of the upper airway during sleep. The cessation or reduction in airflow is often associated with decreased oxygen saturation and/or arousal from sleep. Patients with OSA present with a constellation of nocturnal symptoms that include loud disruptive snoring, bed partner-reported breathing pauses (apneas), choking and gasping episodes during sleep, and frequent awakenings. Common daytime consequences include excessive daytime sleepiness, fatigue, irritability, and deficits in attention and memory. Epidemiologic data from several community- and population-based studies from North America, Europe, and Asia indicate that sleep apnea affects approximately 3%-7% of adult men and 2%–5% of adult women (Table 25.6) (116). However, the prevalence is likely to have

self-reported sleep duration. Additionally, it has been speculated that long sleepers are actually poor sleepers who extend their time in bed to try to compensate for poor sleep quality (115). Another possibility is that long sleepers suffer from fatigue resulting from an undiagnosed preclinical condition. In a study of type 2 diabetes patients, long sleepers (≥8.5 hours per night) were more likely to have depressive symptoms and to be more

increased due to the increasing obesity rates. For example, between 1988–1994 and 2007–2010, the prevalence in the Wisconsin Sleep Cohort increased by as much as 55% (117). In 2007–2010, the estimates of OSA prevalence in obese adults ranged between 33% and 77% in men and between 11% and 46% in women (117). Despite the increasing body of literature recognizing the adverse health consequences and public health impact of sleep apnea, a considerable number of affected individuals remain undiagnosed (118,119).

The diagnosis of OSA is based on an overnight sleep study or a polysomnogram (PSG). It involves simultaneous recordings of several electrophysiological signals, including the right and left electrooculograms, the submental electromyogram, and the electroencephalogram (EEG). Collectively, these physiological signals are used to distinguish wakefulness from sleep physically inactive compared to those who reported sleeping 6.5–7.4 hours per night (35). Increased sedentarity, a correlate of long sleep, could also have adverse cardiometabolic effects. A prerequisite to the identification of putative mechanisms that could mediate adverse effects of long sleep is the demonstration that these effects are still present when sleep duration is assessed objectively, rather than by self-report.

and assess the distribution of various sleep stages. In addition, breathing patterns are assessed with measurements of respiratory effort, airflow, and oxygen saturation. Airflow is recorded with an oronasal thermistor (a probe sensitive to temperature changes that occur with breathing) and/or a nasal cannula configured to monitor pressure changes in the nasal airway. The PSG also includes other measurements, such as continuous electrocardiography, which is used to detect occurrence of cardiac arrhythmias during sleep. The analysis of the PSG for OSA requires identification of abnormal or disordered breathing patterns during sleep. Two basic types of disordered breathing events are assessed: apneas and hypopneas (Table 25.7). An apnea is defined as the complete cessation of airflow for at least 10 seconds. A hypopnea is defined as a reduction in airflow that is associated with an EEG arousal or a decrease in oxygen saturation (120).

TABLE 25.6. Studies on the Prevalence of Obstructive Sleep Apnea

				PREVAL	ENCE (%)
LOCATION, YEARS (REF.)	SAMPLE SIZE	ETHNICITY	SLEEP ASSESSMENT	Men	Women
U.S., 1988 (380)	602	White	Polysomnography	4.0	2.0
U.S., NR (381)	741	White	Polysomnography	3.3	NA
U.S., NR (382)	1,000	White	Polysomnography	NA	1.2
Australia, NR (383)	485	White	Respiratory polygraphy	3.1	NA
India, 1999–2000 (384)	250	Indian	Polysomnography	7.5	4.5
China, 1997–1999 (385)	258	Chinese	Polysomnography	4.1	NA
China, 1998–2000 (386)	NR	Chinese	Polysomnography	NA	2.1
Korea, 2001 (387)	457	Korean	Polysomnography	4.5	2.3

NA, not applicable; NR, not reported.

SOURCE: Adapted from Reference 116, reprinted with permission of the American Thoracic Society. Copyright © 2008 American Thoracic Society. Proceedings of the American Thoracic Society is an official journal of the American Thoracic Society. References for individual studies are listed within the table.

TABLE 25.7. Types of Disordered Breathing Events During Sleep

TERM	DEFINITION
Disordered breathing event Apnea Hypopnea	Cessation of airflow ≥10 seconds Reduction in airflow associated with oxygen desaturation and/or arousal
Type of disordered breathing event Obstructive Central Mixed	An event with absence of airflow but with continued respiratory effort An event with absence of airflow and no respiratory effort An event that typically starts with a period that meets the criteria for a central event but ends with respiratory effort without airflow
Indices on disordered breathing severity Apnea-Hypopnea Index Apnea Index Hypopnea Index Central Apnea Index	Number of apneas and hypopneas per hour of total sleep time Number of apneas per hour of total sleep time Number of hypopneas per hour of total sleep time Number of central apneas per hour of total sleep time

SOURCE: Original table constructed by N. M. Punjabi.

Disordered breathing events are further classified into obstructive, central, or mixed events. The classification of an abnormal breathing event is dependent on whether, in the absence of oronasal airflow, there is evidence of respiratory effort. An obstructive event is defined as the absence of airflow in the presence of continued effort. In contrast, a central event is defined as the absence of airflow without associated effort. Finally, a mixed event manifests characteristics of an obstructive and a central event. Mixed events typically start with a period that meets the criteria for a central event but end with increasing effort but without associated airflow. Figure 25.3 illustrates tracings of the three types of abnormal breathing patterns (obstructive, central, and mixed apneas) during sleep (121). PSG yields a quantification of episodes of apnea and hypopnea per hour of sleep, an apnea-hypopnea index (AHI). A diagnosis of OSA is made when the AHI is ≥ 5 .

OBSTRUCTIVE SLEEP APNEA AND METABOLIC DYSFUNCTION

In addition to reductions in sleep duration and quality, intermittent hypoxia is the hallmark of OSA. Only one experimental study in humans has examined the impact of intermittent hypoxemia on glucose metabolism. In this study, 13 healthy volunteers were subjected to 5 hours of intermittent hypoxia while awake, resulting in an average of 24.3 desaturation events per hour (122), equivalent to hypoxia in OSA of moderate severity (AHI \geq 15–30). Insulin sensitivity and glucose

FIGURE 25.3. Types of Disordered Breathing Events

Three-minute recordings characteristic of obstructive, central, and mixed apneas during sleep. Traces shown represent oxyhemoglobin saturation, airflow, and thoracic and abdominal movement. SOURCE: Reference 121, copyright © 2013 Elsevier, reprinted with permission effectiveness, as assessed by IVGTT, were reduced by 17% and 31%, respectively, without simultaneous increase in insulin secretion. These results suggest that hypoxic stress may have an intrinsic adverse impact on glucose metabolism and diabetes risk.

Over the last two decades, a number of observational studies have demonstrated that OSA is associated with insulin resistance, glucose intolerance, type 2 diabetes, and the metabolic syndrome, independent of such factors as age, sex, race, BMI, and measures of visceral adiposity (Tables 25.8 and 25.9). Epidemiologic data from community- and population-based cohorts, including the Sleep Heart Health Study (123) and the Wisconsin Sleep Cohort Study (124), have shown that the severity of OSA, as assessed by the AHI, is directly associated with fasting hyperglycemia, glucose intolerance, and the prevalence of physician-diagnosed type 2 diabetes. Irrespective of the method used for assessing insulin sensitivity, a majority of published reports indicate that the severity of OSA (i.e., AHI) is inversely related to the degree of insulin sensitivity. Moreover, metrics of nocturnal hypoxemia (e.g., oxyhemoglobin desaturation and average oxygen saturation during sleep) strongly correlate with the degree of whole body insulin resistance (Table 25.8).

TABLE 25.8.	Studies on the	Association Betweer	Obstructive Sleep	Appea and Measure	s of Insulin Resistance
17 IDEE 20.0.		10000iation Detween	i obstituctive oleep	riprica ana measare	5 01 115unit 1105i5turieo

YEARS (REF.)	STUDY SAMPLE	SAMPLE SIZE	SLEEP ASSESSMENT	INDEPENDENT VARIABLE	DEPENDENT VARIABLE	CONFOUNDERS ASSESSED	ASSOCIATION
NR (388)	OSA	18	Oximetry	ODI	Insulin resistance index from OGTT	BMI, age	+
1991–1993 (389)	OSA	261	PSG	AHI	I _o	BMI	+
NR (390)	OSA and controls	66	PSG	AHI	I _o	BMI, waist/hip ratio, age	-
1991 (391)	Primary care	1,190	Self-report	OSA symptoms	Ιo	BMI, visceral fat, age	+
NR (392)	Healthy participants	50	MESAM*	ODI	Insulin suppression test	BMI, age, sex, activity	-
NR (246)	OSA	10	PSG	AHI	Hyperinsulinemic clamp	BMI	-
NR (393)	OSA and controls	60	PSG	AHI	$I_{\scriptscriptstyle 0}$ and $I_{\scriptscriptstyle 0}/G_{\scriptscriptstyle 0}$ ratio	BMI, waist, hip, age, sex	+
NR (394)	OSA and controls	37	PSG	AHI	Ιo	BMI, visceral fat	+
1996–1998 (395)	Hypertensive men	116	Edentec*	ODI	lo	BMI, waist/hip ratio, age	+
1999–2000 (396)	OSA	270	PSG	AHI	HOMA IR	BMI, waist, age	+
NR (397)	OSA	20	PSG	AHI	Hyperinsulinemic clamp	BMI, sex, age	+
NR (398)	Community sample	151	PSG	AHI	HOMA IR	BMI, waist, percent body fat	+
1998–2000 (399)	OSA and snorers	595	PSG	AHI	G_0/I_0 ratio	BMI, age	+
NR (400)	OSA and controls	57	PSG	AHI	Insulin sensitivity index from OGTT	BMI, waist/hip ratio, age	+
NR (401)	OSA and controls	65	PSG	AHI	HOMA IR	BMI, age	-
1994–1999 (123)	Community sample	2,565	PSG	AHI	HOMA IR	BMI, waist, age, sex	+
NR (402)	OSA	213	PSG	AHI	HOMA IR	BMI, visceral fat, age	+
NR (244)	OSA and controls	42	PSG	AHI	HOMA IR	BMI, waist, age	+
2003–2005 (245)	OSA and controls	120	PSG	AHI	HOMA IR	BMI, waist	-
NR (403)	OSA	67	PSG	AHI	HOMA IR	BMI, waist	-
2002–2004 (404)	Population sample	400	PSG	AHI	Insulin sensitivity index	Waist/hip ratio, age, activity	+
NR (405)	OSA	98	PSG	AHI	HOMA IR	BMI, sex, age	+
NR (406)	OSA and controls	118	PSG	AHI	Insulin sensitivity from IVGTT	BMI, waist, percent fat, age	+
NR (407)	OSA and controls	98	PSG	AHI	HOMA IR	BMI, age	+
NR (408)	OSA	23	PSG	AHI	HOMA IR	BMI	+

AHI, apnea-hypopnea index; BMI, body mass index; G₀, fasting glucose; HOMA IR, homeostasis model assessment of insulin resistance; I₀, fasting insulin; IVGTT, intravenous glucose tolerance test; NR, not reported; ODI, oxygen desaturation index; OGTT, oral glucose tolerance test; OSA, obstructive sleep apnea; PSG, polysomnogram. In the Association column, a plus sign (+) denotes a statistically significant association and a minus sign (-) denotes no significant association. * Edentec and MESAM are portable sleep monitoring units.

SOURCE: References are listed within the table.

To date, nine prospective cohort studies, with approximately 65,000 participants, have been conducted to explore whether the presence of OSA, using objective sleep assessments, at baseline predicted incident diabetes during a follow-up, after adjusting for BMI or other measures of adiposity and other confounders (Table 25.10) (28,124,125,126,127,128,129,130,131). The studies varied in the methods and criteria used to diagnose OSA (pulse oximetry vs. full or limited PSG, and cutoff for AHI/oxygen desaturation index), verification of diabetes diagnosis, and duration of follow-up period (2.7–16 years). A meta-analysis including five of these studies (total 5,953 participants) revealed that moderate to severe OSA was associated with a significantly greater risk of developing diabetes, with a relative risk

FABLE 25.9. Studies on the Association Betwee	n Obstructive Sleep Apnea	, Glucose Tolerance,	Type 2 Diabetes,	and the Metabolic Syndrome
--	---------------------------	----------------------	------------------	----------------------------

YEARS (REF.)	STUDY SAMPLE	SAMPLE SIZE	SLEEP ASSESSMENT	INDEPENDENT VARIABLE	DEPENDENT VARIABLE	CONFOUNDERS ASSESSED	ASSOCIATION
NR (398)	Community sample	151	PSG	AHI	OGTT	BMI, waist, percent fat	+
1998–2000 (399)	OSA and snorers	594	PSG	AHI	OGTT	BMI, age	+
NR (400)	OSA and controls	57	PSG	AHI	OGTT	BMI, waist/hip ratio	+
1994–1999 (123)	Community sample	1,930	PSG	AHI	OGTT	BMI, waist, age, sex	+
2002–2004 (404)	Population sample	400	PSG	AHI	OGTT	Waist/hip ratio, age, activity	+
1994–1999 (409)	Community sample	2,588	PSG	AHI	OGTT	BMI, waist, age, sex	+
2004–2005 (410)	Population sample	2,896	Self-report	OSA symptoms	OGTT	BMI, age, sex	+
1994 (395)	Hypertensive men	116	Portable monitor	ODI	Diabetes prevalence	BMI, waist/hip ratio, age	+
1986–1996 (411)	Nurses' Health Study	69,852	Self-report	OSA symptoms	Self-reported diabetes	BMI, age, menopause	+
1991–1994 (412)	Population sample	295	Self-report	Snoring	Metabolic syndrome	Age, smoking, activity, exercise	+
NR (413)	OSA and controls	104	PSG	AHI	Metabolic syndrome	BMI, age, smoking, alcohol	+
NR (414)	OSA	87	PSG	AHI	Metabolic syndrome	None	+
NR (415)	OSA	819	PSG	AHI	Metabolic syndrome	BMI, age	+
NR (416)	OSA and controls	79	Portable monitor	AHI	Metabolic syndrome	BMI, age, smoking	+
1997–1999 (417)	Community sample	255	PSG	AHI	Metabolic syndrome	BMI, age, sex	+
2004–2005 (418)	Population sample	1,946	Self-report	OSA symptoms	Metabolic syndrome	Age, sex, smoking	+
NR (419)	OSA	98	PSG	AHI	Metabolic syndrome	BMI	+
2002–2006 (420)	OSA and controls	94	PSG	AHI	Metabolic syndrome	BMI, visceral fat, sex	+
2004 (421)	Sleep clinic sample	225	PSG	AHI	Metabolic syndrome	BMI, age	+
1983–1987 (422)	OSA	40	PSG	Diabetes status	OSA prevalence	Age, BMI	+
1996–1998 (423)	Population sample	593	Self-report	Diabetes status	OSA prevalence	BMI, neck, sex	+
NR (424)	Diabetic patients	938	Self-report	Diabetes status	OSA prevalence	BMI, neck, age	+
2001 (425)	Population sample	993	Self-report	Glucose tolerance	OSA prevalence	BMI, waist, sex, activity	+
NR (137)	Diabetic patients	279	Portable monitor	Diabetes status	OSA prevalence	BMI, age	+
2005 (426)	Patients with the metabolic syndrome	24	PSG	Metabolic syndrome	OSA prevalence	None	+
2003–2007 (427)	Patients with the metabolic syndrome	195	Portable monitor	Metabolic syndrome	OSA prevalence	Age, sex, hypertension	+

AHI, apnea-hypopnea index; BMI, body mass index; NR, not reported; ODI, oxygen desaturation index; OGTT, oral glucose tolerance test; OSA, obstructive sleep apnea; PSG, polysomnogram. In the Association column, a plus sign (+) denotes a statistically significant association and a minus sign (-) denotes no significant association. SOURCE: References are listed within the table.

of 1.63 (95% Cl 1.09–2.45), compared to those without OSA (132). In those with mild OSA (AHI <15), the relative risk was 1.22 (95% Cl 0.91–1.63), but this was not statistically significant. These data strongly support the concept that the presence of moderate to severe OSA is a risk factor for diabetes development independent of other confounding factors. In patients with an established diagnosis of type 2 diabetes, who were generally obese, OSA was shown to be highly prevalent, from a lowest estimate of 58% to a highest estimate of 86%, based on seven independent studies involving a total of 1,272 participants (Figure 25.4) (133,134,135,136,137,138,139). The weighted average was 67%. This proportion is alarming given that, in 2011, 20.9 million Americans were estimated to have diabetes, which could possibly translate to as many as 14 million individuals suffering from both diabetes and OSA. Unfortunately, this highly prevalent comorbidity of type 2 diabetes often remains unrecognized. A retrospective analysis of 27 primary

TABLE 25.10. Prospective Studies or	n the Relationship Between Obstructive	e Sleep Apnea and Incident Diabetes
-------------------------------------	--	-------------------------------------

STUDY/LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	OSA ASSESSMENT	DIABETES ASSESSMENT	RESULTS
Connecticut, 2000–2005 (125)	Patients referred to the Veterans Affairs Sleep Center, mean age 61.5 years	1,233	2.7	AHI ≥8 by PSG	Fasting glucose >126 mg/dL, ascertained by chart review	OSA was associated with diabetes, HR 1.43 (95% CI 1.10–1.86).
Sweden, 1991–2007 (126)	Patients referred to sleep laboratory, mean age 48.2 years	318	16	4% ODI ≥30 events/ night using an oximetry, a nasal and oral airflow, and respiration and body movement monitoring	Self-reported diabetes diagnosis, verified by chart review	OSA was associated with diabetes in women, OR 11.78 (95% CI 1.14–121.7), but not in men.
Sweden, 1996–2008 (127)	Population- based, men who responded to postal questionnaires, mean age 57.5 years	141	11.3	AHI ≥5 by PSG	Self-reported diabetes diagnosis, verified by FPG ≥126 mg/dL	OSA was associated with diabetes, OR 4.4 (95% CI 1.1–18.1).
Australia, 1990–1995 (128)	Population-based study, mean age 53.1 years	399	4	RDI ≥5 from a 4-channel home monitoring device (heart rate, oxygen saturation, snoring, and body position)	Self-reported diabetes diagnosis, use of medication, or FPG ≥126 mg/dL	Moderate to severe OSA (RDI ≥15) was associated with diabetes, OR 13.45 (95% Cl 1.59–114.11).
Japan, 2001–2007 (129)	Population-based study in five communities, mean age 57.6 years	4,606	3	3% ODI ≥5 events/hour from a pulse oximetry	FPG ≥126 mg/dL, random glucose ≥200 mg/dL, or use of diabetes medications/insulin	Moderate OSA (ODI ≥15) was associated with diabetes, HR 1.69 (95% CI 1.04–2.76).
Wisconsin Sleep Cohort, 1988–1993 (124)	Mean age 49.0 years	1,387	4	AHI ≥5 by PSG	Self-reported diabetes diagnosis or FPG ≥126 mg/dL	No association between OSA and diabetes development
Millennium Cohort by the Department of Defense, 2001–2007 (28)	Mean age 36.7 years	47,093	6	Reported a physician diagnosis of OSA	Self-reported diabetes diagnosis	OSA was associated with diabetes, OR 1.78 (95% CI 1.39–2.28).
Australia, 2000–2012 (130)	Population-based study, mean age 59.7 years	736	4.7	Eight-channel, unattended, in-home PSG performed at the last visit	Self-reported diabetes diagnosis or use of medication or FPG ≥126 mg/dL or A1c ≥6.5%	Current severe OSA (AHI \geq 30) was associated with diabetes, OR 2.6 (95% Cl 1.1–6.1).
						Current ODI \geq 16 was associated with diabetes, OR 1.85 (95% Cl 1.06-3.21).
Canada, 1994–2011 (131)	Patients referred to sleep lab	8,678	5.6	AHI ≥5 by PSG	At least one hospitalization record or at least two physician services claims bearing a diagnosis of diabetes within a 2-year period	AHI >30 was associated with diabetes, HR 1.31 (95% CI 1.07–1.61).

Conversions for A1c and glucose values are provided in *Diabetes in America Appendix 1 Conversions*. A1c, glycosylated hemoglobin; AHI, apnea-hypopnea index; CI, confidence interval; FPG, fasting plasma glucose; HR, hazard ratio; ODI, oxygen desaturation index; OR, odds ratio; OSA, obstructive sleep apnea; PSG, polysomnogram; RDI, respiratory disturbance index.

SOURCE: References are listed within the table.

FIGURE 25.4. Prevalence of Obstructive Sleep Apnea Among Persons With Type 2 Diabetes

Obstructive sleep apnea was assessed by polysomnogram in all studies. SOURCE: References are listed within the figure.

care practices involving 16,066 diabetes patients found that only 18% were diagnosed with OSA, suggesting that a majority of diabetic patients may not be diagnosed, and therefore, their OSA is left untreated (140).

Similar to nondiabetic populations, the severity of untreated OSA is associated with poorer glycemic control in diabetic populations. Aronsohn et al. utilized PSG to assess OSA severity in 60 diabetic patients (133). There was a graded relationship between the severity of untreated OSA as measured by AHI and higher A1c levels after adjusting for age, sex, race, BMI, years of diabetes, numbers of diabetes medications, exercise, and total sleep time, with an effect size as large as that associated with the impact of diabetes drugs. Another cross-sectional study in 52 diabetic patients also found that increased severity of OSA was associated with increased A1c levels, after adjusting for age, sex, BMI, diabetes duration, and insulin dose (139). Adjusted mean A1c was 8.6% (70 mmol/mol) in those without OSA, 9.4% (79 mmol/mol) in mild OSA, 10.6% (92 mmol/mol) in moderate OSA, and 9.9% (85 mmol/mol) in severe OSA. However, not all of the studies supported a link between OSA severity and glycemic control. The Sleep AHEAD study, involving obese type 2 diabetes patients, analyzed

the relationship between sleep and metabolic parameters in 305 subjects (141). The only significant association was an inverse correlation between fasting glucose levels and sleep efficiency, but not AHI or other sleep variables. A limitation of this study is that PSG was performed in the homes of the participants and, thus, was often of lower quality and shorter duration than in the laboratory.

Altogether, evidence supports an adverse impact of OSA on glycemic control in patients with type 2 diabetes. As differences in A1c levels among patients with different degrees of severity of OSA are comparable to the effect size of the most powerful combinations of available diabetes medications, multiple studies have attempted to determine whether OSA treatment with CPAP in patients with diabetes improves glycemic control, as discussed later in this chapter.

OBSTRUCTIVE SLEEP APNEA AND DIABETES COMPLICATIONS

The development of microvascular complications of diabetes is associated with poor long-term glycemic control and increased health care costs. Because OSA is associated with activation of the sympathetic nervous system and of inflammatory processes, as well as oxidative stress, it is likely that OSA contributes to the development and/or progression of these complications irrespective of strategies to optimize diabetes control. Although the details are beyond the scope of this chapter, there is evidence that type 2 diabetes patients with OSA may suffer more complications, including peripheral neuropathy, retinopathy, and nephropathy (142,143,144), than those without OSA, with the degree of oxygen desaturation being an independent predictor in some studies (142,143). This field is a subject of ongoing research to establish whether OSA is an independent predictor of diabetes complications and whether OSA treatment delays the development or decreases the severity of microvascular complications.

REM-RELATED OBSTRUCTIVE SLEEP APNEA

The reduction in pharyngeal muscle activity that normally occurs during REM sleep is associated with more prolonged obstructive events and more severe oxygen desaturation in OSA patients (145). In some patients, the respiratory events occur predominantly during REM sleep. This phenomenon has been termed "REM-related OSA" and is prevalent in 10%–36% of OSA patients (146). Compared to NREM sleep, apneas and hypopneas during REM sleep are associated with higher sympathetic nervous system activation and greater degrees of hypoxemia (147). REM-related OSA may lead to greater cardiometabolic derangements and more adverse health consequences (146). This hypothesis was addressed for the first time in a crosssectional study involving laboratory PSG in 115 participants with type 2 diabetes. Higher REM AHI and REM microarousal index were significantly correlated with higher A1c levels, supporting the significance of REM-related OSA for glucose metabolism (148). In contrast, associations between NREM AHI or NREM microarousal index and A1c were nonsignificant. An important implication of this study is that metabolic benefits of CPAP treatment of OSA may not be achieved with CPAP use of only 3-5 hours per night.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE TREATMENT ON GLUCOSE METABOLISM AND DIABETES CONTROL

Given the large body of relatively consistent data relating OSA to abnormalities in glucose metabolism, it is somewhat surprising to find that studies on the effects of treatment with CPAP therapy on glucose metabolism in OSA have produced equivocal results (149,150,151). While some investigators have demonstrated a favorable effect of CPAP therapy on glucose metabolism (152), others have found no effect. Among the nine randomized controlled trials (RCTs) comparing active CPAP to sham-CPAP with treatment duration between 1 week and 3 months and device use of 2.8-6.2 hours per night, six found that active CPAP did not improve fasting glucose levels or insulin sensitivity (153,154,155,156,157), one observed an improvement of insulin sensitivity at 24 weeks (nonrandomized part of the study) but not at 12 weeks during randomization (158), and two reported an improvement in insulin sensitivity, mainly in obese patients or those with severe OSA (159,160). In a study focusing only on patients with relatively well-controlled diabetes (A1c 6.5%-8.5% [48-69 mmol/mol]), CPAP treatment did not result in significant changes in A1c levels (161).

Five meta-analyses have tried to summarize the impact of CPAP treatment on markers of glucose metabolism (162,163,164,165,166). The inclusion criteria of these meta-analyses varied between including only studies with inactive control or sham CPAP, including both observational studies and RCTs, or including only the studies that utilized A1c as a part of the outcome measures. Therefore, these five meta-analyses included different studies with some overlap. Hecht et al. reported no effect of CPAP treatment on insulin, HOMA, or A1c levels from six studies utilizing inactive control or sham CPAP (total 296 participants) (164). Iftikhar et al. reported no effects on A1c from nine studies (both observational and RCTs) involving 151 participants (162). This conclusion

is in agreement with the study by Chen et al. that found no improvement in A1c levels, although the index of insulin resistance improved significantly (165). In nondiabetic subjects, there seems to be an improvement of insulin resistance after CPAP therapy. Yang et al. found an improvement in HOMA-IR with a mean difference of -0.55 (95% CI -0.91 to -0.20) in nondiabetic subjects with moderate to severe OSA (from nine studies, both observational and RCTs, totaling 248 subjects) but no differences in fasting glucose levels in 39 diabetic participants from two studies (163). Similar results were found in the analysis by Iftikhar et al. (166).

The inconsistency of results in the published literature is most likely due to a number of methodologic limitations, such as small sample sizes, inadequate consideration for the confounding effects of obesity, lack of data on CPAP compliance, or suboptimal CPAP compliance. As mentioned earlier, there is evidence that the adverse impact of untreated OSA on glycemic control in diabetes may be primarily caused by obstructive events occurring during REM, rather than NREM, sleep (148). CPAP use of 3–5 hours per night only treats a small portion of REM-related events and could be the reason why several RCTs of CPAP in diabetic patients have failed to

observe a beneficial effect on glycemic control. Alternatively, it is plausible that the metabolic effects of OSA are irreversible, particularly if recurrent exposure to intermittent hypoxemia and sleep fragmentation causes irreparable changes in insulin sensitivity, insulin secretion, or both. In light of the limited data, it is indeed premature to infer whether CPAP therapy in OSA does or does not improve glucose metabolism. Ongoing research efforts in the form of randomized clinical trials will hopefully help determine whether CPAP therapy has favorable effects on glucose metabolism among patients with OSA. Of note, a RCT examining the impact of 8 hours of nightly CPAP in the laboratory on glucose tolerance in individuals with prediabetes reported positive findings (167).

MECHANISTIC LINKS BETWEEN OBSTRUCTIVE SLEEP APNEA AND METABOLIC DYSFUNCTION

If the link between OSA and abnormalities in glucose metabolism is eventually proven to be causal, what are the potential mechanisms that underlie the association? Most likely, alterations in glucose homeostasis induced by OSA are mediated by a complex set of interactive mechanisms that are triggered by the cyclical hypoxemia and recurrent arousals from sleep (Figure 25.5) (168). In the sections that follow, physiological systems

FIGURE 25.5. Putative Mechanisms Linking Sleep Apnea to Type 2 Diabetes

SOURCE: Reference 168, copyright © 2015 Elsevier, reprinted with permission

that may play an important role in mediating the effects of OSA on glucose metabolism are highlighted. Particular focus is given to the sympathetic nervous system, the hypothalamic-pituitaryadrenal (HPA) axis, formation of reactive oxygen species (ROS), and low-grade systemic inflammation. It is important to recognize that for each physiological system influenced by OSA, intermittent hypoxemia and sleep fragmentation may perturb the system independently or synergistically.

Role for the Sympathetic Nervous System

Compared to normal subjects, patients with OSA exhibit higher levels of sympathetic nervous system activity not just during sleep, but also during wakefulness (169). The decrease in oxyhemoglobin saturation and the concurrent increase in carbon dioxide with each disordered breathing event elicit a chemoreflex-mediated surge in sympathetic activity (170,171). Observational and experimental studies have demonstrated that even brief arousals from sleep can lead to a surge in sympathetic activity (172,173). Thus, intermittent hypoxemia and recurrent arousals from sleep can shift autonomic balance in patients with OSA. Although the exact mechanisms through which sympathetic activation affects insulin sensitivity are not well defined, there is little doubt that it has a central role in the regulation of glucose and fat metabolism (174). Catecholamines reduce insulin sensitivity and insulin-mediated glucose uptake (175). Administration of epinephrine in normal subjects can decrease insulin-mediated glycogenesis, increase glycolysis, and dampen the ability of glucose to stimulate its own disposal (176,177). Higher levels of sympathetic activity have lipolytic effects through signaling pathways that activate hormone-sensitive lipase, which can mobilize nonesterified fatty acids (178). An abrupt increase in circulating free fatty acids can worsen insulin sensitivity, while a decrease can improve insulin sensitivity, hyperinsulinemia, and glucose tolerance (179,180). In addition

to the above effects, activation of the sympathetic nervous system can lead to systemic vasoconstriction, which can also affect glucose metabolism. A decrease in vascular lumen size in skeletal muscle from vasoconstriction shunts glucose and insulin to less metabolically active areas of skeletal muscle (181) and, thus, decreases overall glucose uptake (182). Sympathetic activation can also alter skeletal muscle morphology to a more insulin resistant type (183), inhibit insulin signaling, and decrease insulin-mediated glucose uptake by adipocytes (184). Thus, there is sufficient basis to speculate that an increase in sympathetic nervous system activity due to recurrent intermittent hypoxemia and sleep fragmentation plays a central role in altering glucose metabolism in sleep apnea.

Role of the Hypothalamic-Pituitary-Adrenal Axis

Recurrent intermittent hypoxemia and arousals in OSA could alter glucose metabolism by modulating the function of the HPA axis. Specifically, a stress-related increase in HPA activity and cortisol secretion could lead to insulin resistance and hyperglycemia. Observational data from studies of high altitude or of hypobaric conditions indicate that hypoxia modifies the diurnal pattern of the HPA axis and increases circulating cortisol (185,186,187,188,189,190,191). Moreover, brief arousals or sustained awakenings from sleep can activate the HPA axis and can further augment corticotropic function (192,193). However, experimentally induced micro-arousals designed to selectively suppress SWS for three consecutive nights in healthy young adults had no significant impact on the 24-hour profile of cortisol levels, despite an overall sleep fragmentation in the range of that associated with moderate to severe OSA (41). A notable limitation in many of the available studies on HPA axis activity in OSA is that corticotropic function was assessed with a single measurement of serum cortisol. While convenient, isolated cortisol measurements cannot reveal diurnal changes or the temporal variability in cortisol secretion.

Characterizing HPA dysfunction in OSA has scientific and clinical relevance, as it would help clarify its putative role in mediating insulin resistance and glucose intolerance. It is well established that cortisol and other glucocorticoids interfere with glucose metabolism at several different levels (194,195). Cortisol increases hepatic gluconeogenesis and causes protein degradation. It also activates lipoprotein lipase, which mobilizes nonesterified fatty acids and can greatly diminish insulin sensitivity. Moreover, cortisol inhibits beta cell secretion of insulin and sequentially modifies multiple aspects of the insulinmediated glucose transport system. In a small study of CPAP treatment of OSA in obese women with the polycystic ovary syndrome, there was a trend for reduced evening cortisol concentrations following CPAP (196). Given the myriad of adverse metabolic effects of HPA dysfunction, further research is needed to determine whether OSA affects HPA activity and, thus, alters glucose metabolism function.

Reactive Oxygen Species as a Causal Intermediate

Repetitive cycles of hypoxemia followed by re-oxygenation in OSA could increase ROS production similar to what has been observed with ischemia-reperfusion injury (197,198). Data indeed suggest that OSA is associated with higher concentrations of ROS that may, in turn, negatively influence glucose metabolism. Using study samples of modest size along with assessments before and after initiation of CPAP therapy, a number of studies have shown abnormalities in lipid peroxidation, higher isoprostane levels, and elevated markers of DNA oxidation in patients with OSA compared to normal subjects and a decline in these markers after treatment with CPAP (199,200,201,202,203). Moreover, antioxidant defenses may also be diminished in OSA (204,205). Finally, a number of in vitro studies have shown that apneic patients have increased adhesion molecule expression and production of ROS in leukocytes (206), an augmented release of neutrophil superoxide (207), and increased oxidized low-density lipoprotein (LDL) autoantibodies (208).

Excessive concentrations of ROS can be harmful particularly to the pancreatic beta cell given that this cell population is relatively low in antioxidant enzyme mechanisms, such as catalase, glutathione peroxidase, and superoxide dismutase (209). ROS formation is also accompanied by an inhibition of insulin-stimulated substrate uptake in insulin-sensitive tissues, such as muscle and adipose tissue (210,211,212). Moreover, several studies also suggest that pharmacological doses of the antioxidants vitamin E, vitamin C, and lipoic acid in healthy volunteers and diabetic patients may improve insulin sensitivity and metabolic control (213,214,215,216). While mechanisms underlying the effects of an altered redox state on insulin sensitivity require further elucidation, several converging lines of evidence, including clinical and experimental data, indicate that oxidative stress is a causative factor. Thus, OSA-associated increase in free radical generation could represent a causal component for the development of insulin resistance.

Importance of Systemic Inflammation and Adipocytokines

Low-grade systemic inflammation may be yet another mechanism relating OSA to disorders of glucose metabolism. Compared to normal subjects, patients with OSA have higher levels of circulating adhesion molecules (217,218,219,220,221,222) and inflammatory cytokines, including IL-6 and TNF-alpha, which decrease with CPAP therapy (223,224,225,226). Studies examining specific leukocyte populations also reveal that OSA patients exhibit monocyte and lymphocyte activation, which improve with CPAP therapy (227,228,229). In normal subjects, hypoxia increases circulating leukocyte concentration and alters the functional characteristics of lymphocytes (230,231,232). Sympathetic hyperactivity in sleep apnea may also influence the innate immune response given that adrenergic stimulation enhances macrophage and lymphocyte activity and alters their proliferation, circulation, and cytokine production (233,234). A concern in invoking systemic inflammation as an intermediate between

OSA and metabolic dysfunction is the confounding effects of obesity. Adipose tissue can increase systemic inflammation, as visceral adiposity has an enhanced capacity to produce numerous cytokines, including IL-6 and TNF-alpha. However, it appears that even after considering the effects of BMI and measures of visceral obesity, sleep apnea severity is independently correlated with the degree of inflammatory burden (235). Thus, low-grade systemic inflammation could potentially mediate the adverse metabolic effects of OSA.

In addition to the systemic inflammation, adipocyte-derived factors, such as leptin, adiponectin, and resistin, may play a role in the genesis of sleep apnea-related abnormalities in glucose metabolism. Leptin regulates hunger and weight gain by increasing anorexigenic and decreasing orexigenic neuropeptides in the hypothalamus (236). Peripherally, leptin appears to be involved in governing glucose homeostasis (237,238). A growing body of literature shows that patients with sleep apnea have higher leptin levels (239,240,241,242,243,244,245), which decrease with CPAP therapy independent of any changes in body weight (246,247,248,249). Moreover, exposure to hypoxic conditions increases leptin levels in normal subjects (250). Thus, higher leptin levels in OSA could certainly alter glucose metabolism. Adiponectin has endogenous insulin-sensitizing properties. Adiponectin is lower in patients with sleep apnea than in normal subjects. and circulating levels appear to correlate with the nadir in oxygen saturation (251,252,253,254,255,256,257). Resistin is another adipocytokine that inhibits insulin action and may have a role in the pathogenesis of type 2 diabetes (258,259). At present, there are limited data on whether resistin levels differ between patients with OSA and control subjects (251,260,261). Clearly, additional work is needed to determine whether adiponectin and resistin are affected by intermittent hypoxemia and recurrent arousals and whether these adipocytokines could be involved in causing metabolic dysfunction in OSA.

IMPACT OF TYPE 2 DIABETES ON BREATHING DISORDERS DURING SLEEP

While much of the discussion has been focused on the consideration that OSA contributes to metabolic dysfunction, there is also the possibility of reverse causation. That is, once hyperglycemia and type 2 diabetes develop, can these then contribute to the incidence or worsening of OSA? Cross-sectional studies demonstrating a high prevalence of OSA in type 2 diabetes do not provide evidence for a direction of causality.

Data on the occurrence and temporal progression of OSA in diabetic individuals are lacking, as are studies exploring the possibility that type 2 diabetes could worsen OSA severity (262,263,264,265,266). Experimental data from animal models show that insulin resistance is associated with reduced ventilatory response that can be enhanced with insulin treatment (267). Whether such abnormalities in ventilatory control have downstream consequences and increase human predisposition to apneas and hypopneas during sleep is not known. Ongoing research efforts based on longitudinal studies will hopefully clarify whether progression of OSA differs between diabetic and nondiabetic subjects and is affected by glycemic control or the type of pharmacological treatment of diabetes.

Type 2 diabetes may also promote the expression of central sleep apnea. Using data from the community-based Sleep Heart Health Study, Resnick et al. (135) showed that participants with type 2 diabetes had a higher prevalence of Cheyne-Stokes or periodic breathing and central respiratory events during sleep than those without type 2 diabetes. In this cross-sectional analysis, the higher prevalence of periodic breathing in diabetic versus nondiabetic individuals (OR 1.74) persisted even after accounting for multiple covariates, including age, sex, BMI, and prevalent cardiovascular disease. It is possible that diabetesassociated autonomic dysfunction may lead to instability of the respiratory

control system via enhanced central chemoreceptor-mediated gain, as well as cardiac impairments with prolonged circulatory time. Evidence supporting the notion that diabetic individuals with autonomic neuropathy may have a heightened response to hypercapnia has been previously described (268). Coupled with numerous clinical case series (269,270,271), the available research suggests that central sleepdisordered breathing is prevalent in type 2 diabetes, particularly if there is concurrent evidence of autonomic dysfunction.

SLEEP DISTURBANCES DURING PREGNANCY: RELATIONSHIP WITH GLUCOSE METABOLISM AND GESTATIONAL DIABETES

Sleep alterations are common during pregnancy due to hormonal and physical changes. Progesterone has sedative effects and can stimulate respiratory drive, while estrogen increases hyperemia, mucosal edema, and upper airway resistance, resulting in nasal stuffiness and snoring (272). Upward displacement of the diaphragm may cause a reduction in functional residual volume of the lungs and, therefore, oxygen reserve. Nausea, vomiting, frequent urination, and backache can decrease sleep efficiency and increase nocturnal awakenings.

During the first trimester, sleepiness is common, and women report an increase in sleep duration of approximately 0.7 hours (273). However, sleep efficiency and percentage of SWS decrease significantly (274). Sleep duration decreases in the late second trimester (274), although there is an observed increase in percentage of SWS (275). During the third trimester, a majority of women report sleep disturbances. There is a decrease in percentage of SWS and REM sleep (272) with an increase in time spent in light NREM sleep (stage N1) (276). Wake time after sleep onset increases, but total sleep time approximates the prepregnancy state (274). At this stage of pregnancy, a majority of women report taking daytime naps (277). Snoring is quite common, as two large studies, including in total more than 2,700 pregnant women, revealed that about one-third of participants reported snoring, with 25% reporting pregnancy-onset snoring (278,279). Symptoms of OSA increased during pregnancy in a prospective study, especially in women whose BMI exceeded 25 kg/m² (280).

Gestational diabetes mellitus affects 2%–25% of pregnant women and is associated with adverse maternal-fetal

outcomes, as discussed in Chapter 4 Gestational Diabetes. An increased risk for gestational diabetes or hyperglycemia is associated with sleep disturbances, including OSA and snoring, short sleep duration, and increased daytime sleepiness. A review of the literature found 15 studies that investigated sleep and glucose intolerance in pregnancy: eight using questionnaires, six using objective sleep measurements, and one using both methods (Table 25.11) (278, 279,281,282,283,284,285,286,287, 288,289,290,291,292,293). Seven studies assessed sleep duration (five by self-report, one by combined selfreport and PSG, and one by actigraphy) (281,282,284,286,289,290,293). Of these seven studies, four found a significant association between short sleep duration and increased risk for gestational diabetes/ hyperglycemia (281,282,284,290). Twelve studies assessed symptoms of OSA or a diagnosis of OSA (278,279,281,282,283,284,287, 288,289,291,292,293). Of the eight studies using questionnaires, five found significant associations between OSA symptoms and gestational diabetes or maternal hyperglycemia (279,281,282,284,289). Among the six studies using objective measurements (five used PSG and one used portable home monitoring) (287,288,289,291,292,293), four found a significant association between OSA and increased gestational diabetes/ hyperglycemia risks (287,288,291,292). A meta-analysis included nine of these studies (total 9,795 participants) and found a significant association between OSA and gestational diabetes, with an odds ratio of 2.18 (95% CI 1.59-2.99) (294). When considering only studies including BMI as a covariate, the

adjusted odds ratio was 3.06 (95% Cl 1.89–4.96). One study found an association between severe daytime sleepiness and gestational diabetes, although the number of women with severe daytime sleepiness was small (285). In addition, increased daytime napping was found to be associated with maternal hyperglycemia in one study (289). The mechanisms by which sleep disturbances increase the risk for gestational diabetes are likely to overlap those linking sleep disturbances and metabolic alterations in nonpregnant populations but have not been studied specifically in pregnancy.

Short sleep, snoring, and OSA in pregnancy have been linked to other adverse maternal and fetal outcomes, including an increased risk of preeclampsia, gestational hypertension (GHTN), preterm birth, and unplanned caesarean delivery (278,279,288,295,296,297). A meta-analysis revealed an association between sleep-disordered breathing and GHTN, with an odds ratio of 2.34 (95% Cl 1.60–3.03), as well as with low birth weight, with an odds ratio of 1.39 (95% CI 1.14–1.65) (298). Oxidative stress, release of proinflammatory cytokines, increased sympathetic activation, peripheral vasoconstriction, and endothelial dysfunction resulting from sleep disturbances are all likely to contribute to these complications (299).

Treatment with CPAP has been shown to be safe during pregnancy and to improve blood pressure control and pregnancy outcomes in women with hypertension and chronic snoring (300). The question of whether treating OSA during pregnancy improves glucose metabolism is crucial as maternal glycemia affects fetal health, but it has not yet been addressed.

YEARS (REF.)	SAMPLE SIZE	TIME OF ASSESSMENT	ASSESSMENT	OUTCOMES OF INTEREST*	RESULTS
Studies utilizing of	uestionnair	es			
2003–2006 (281)	1,290	Early pregnancy	Sleep duration Snoring	Gestational diabetes	Sleeping \leq 4 h was associated with increased risk of gestational diabetes compared to sleeping 9 h (RR 5.56 [95% Cl 1.31–23.69], with RR 3.23 [95% Cl 0.34–30.41] for lean and RR 9.83 [95% Cl 1.12–86.32] for overweight women), adjusting for age and race/ ethnicity.
					Women who snored "most or all of the time" had increased risk of gestational diabetes compared to those who did not snore (RR 1.86 [95% CI 0.88–3.94], with RR 6.9 [95% CI 2.87–16.2] for overweight women who snored).
NR (279)	1,000	Immediate postpartum period	Multivariable Apnea Prediction Index	Gestational diabetes	SDB symptoms were associated with gestational diabetes, OR 2.1 (95% Cl 1.3–3.4), adjusting for age, BMI at delivery, multiple pregnancies, and current smoking.
2007–2008 (282)	189	Early pregnancy (6–20 weeks) and third trimester	Sleep duration Snoring	Gestational diabetes 1-h glucose values from 50 g OGTT	Women sleeping <7 h had higher glucose values and higher incidence of gestational diabetes, OR 11.7 (95% Cl 1.2–114.5) than those who slept \geq 7 h adjusting for age, race/ethnicity, BMI, and frequent snoring.
					Women who snored \geq 3 times/week had higher glucose values and higher incidence of gestational diabetes, OR 6.9 (95% Cl 1.4–33.9), adjusting for age, race/ethnicity, BMI, and sleeping <7 h.
NR (283)	465	During pregnancy or admission for labor	Berlin Questionnaire	Gestational diabetes	More women with positive Berlin Questionnaire had gestational diabetes, but not after adjusting for BMI and maternal medical disorders.
2008–2010 (284)	169	Second trimester (26 weeks)	Pittsburgh Sleep Quality Index, Berlin Questionnaire, Epworth Sleepiness Scale	Gestational diabetes 1-h glucose values from 50 g OGTT	Each hour of reduced sleep time was associated with 4% increase in glucose levels.
					Increased OSA risk was associated with gestational diabetes, OR 3.0 (95% Cl 1.2–7.4).
					Sleeping <7 h was associated with gestational diabetes, OR 2.4 (95% Cl 1.0–5.9).
					Combination of increased SDB risk and sleeping <7 h was associated with gestational diabetes, OR 3.4 (95% Cl 1.3–8.7).
					Frequent snoring (>3–4 days/week) was associated with gestational diabetes, OR 3.4 (95% CI 1.3–8.8).
2007–2010 (278)	1,719	Third trimester	Snoring	Gestational diabetes	No association between chronic snoring (3–4 times/week) or pregnancy-onset snoring with gestational diabetes.
2006-2008	1,000	Immediate	Epworth	Gestational diabetes	No association with gestational diabetes in those with score >10.
(285)		postpartum period	Sleepiness Scale		Significant association with gestational diabetes was found in those with score >16 after adjusting for age, BMI at delivery, and current smoking. The authors cautioned that the number of women with score >16 was small.
NR (286)	1,211	Second to third trimester	Self-reported sleep duration	Maternal hyperglycemia defined as 1-h glucose value ≥140 mg/dL after 50 g OGTT	No differences in glucose values were found between short sleepers (≤6 h/night), normal sleepers (7–9 h/night), or long sleepers (≥10 h/night).
Studies utilizing of	bjective me	asures of sleep			
2000–2009 (287)	143	PSG: 46% before and 54% after delivery	PSG; mild (AHI 5–14.9) and moderate to severe OSA (AHI ≥15)	Gestational diabetes (as a part of adverse pregnancy outcomes)	Thirty-four women with mild and 26 with moderate to severe OSA. Six women had gestational diabetes. None of the women without OSA had gestational diabetes, while 5.9% of those with mild OSA and 11.5% of those with moderate to severe OSA had gestational diabetes (p=0.004).

TABLE 25.11. Studies Investigating the Association Between Sleep in Pregnancy and Gestational Diabetes or Hyperglycemia

Table 25.11 continues on the next page.

YEARS (REF.)	SAMPLE SIZE	TIME OF ASSESSMENT	ASSESSMENT	OUTCOMES OF INTEREST*	RESULTS
2005 (288)	791 with OSA and	Women with OSA had PSG within 1	PSG; diagnosis of OSA	Gestational diabetes	One hundred and sixty-seven women were diagnosed with gestational diabetes.
	3,955 age-matched women presumed without OSA	year prior to index deliveries. Matched controls did not have PSG.			OSA was significantly associated with gestational diabetes, OR 1.63 (95% Cl 1.07–2.48) after adjusting for education, marital status, gestational hypertension, anemia, coronary heart disease, hyperlipidemia, obesity, geographic region, paternal age, infant's sex, and parity.
NR (289)	104	First trimester, 83	PSG	Maternal	Eleven women had hyperglycemia.
		had repeated PSG in third trimester	Pittsburgh Sleep Quality Index, Multivariable Apnea Prediction Index	hyperglycemia defined as 1-h glucose value ≥135 mg/dL after 50 g OGTT	Self-reported loud snoring, snorting/gasping, and apneas were associated with maternal hyperglycemia, OR 3.37 (95% CI 1.44–8.32) after adjusting for age, race, neck circumference, and shift work.
				ouri	Self-reported nap duration was associated with hyperglycemia, OR 1.64 (95% CI 1.00–2.68) after adjusting for age, race, and neck circumference.
					First trimester AHI, self-reported sleep duration, sleep duration and efficiency by PSG were not associated with hyperglycemia.
2009–2010 (290)	76	76 21 weeks of gestation	Actigraphy for 6 days; sleep	1-h glucose after 50 g OGTT	Each hour of reduced sleep time was associated with 8.2 mg/dL increase in glucose levels.
			duration		Shorter night time sleep was associated with hyperglycemia (glucose ≥130 mg/dL) after adjusting for age and BMI, OR 0.2.
NR (291)	75 (high-risk group for preeclampsia)	17 weeks of gestation	Portable monitor (WPAT200); diagnosis of OSA	Gestational diabetes	OSA was significantly associated with gestational diabetes, OR 3.7 (95% Cl 1.1–13.3) after adjusting for maternal age, BMI, and history of chronic hypertension.
2009–2012	45 (15 GDM,	Late second to early	PSG; diagnosis of	Risk of OSA in women with gestational diabetes	Eleven women with gestational diabetes (73%) had OSA.
(292)	NGT, and 15 nonpregnant	oregnant third trimester in F, and 15 pregnant women pregnant F; iched age and nicity)	OSA (AHI ≥5)		Gestational diabetes was significantly associated with OSA, OR 6.6 (95% CI 1.15–37.96), after adjusting for prepregnancy BMI.
	NGT; matched for age and ethnicity)				In NGT women, pregnancy was associated with higher AHI, microarousal index, and wake time after sleep onset.
Study utilizing	questionnaire a	and objective measure	e of sleep		
2010–2012 (293)	52 (26 GDM and 26 NGT, BMI <35 kg/m ²);	(26 GDM 24–32 weeks of 1 26 gestation T, BMI 5 kg/m²);	PSG; diagnosis of OSA (AHI ≥5), self-reported sleep duration	Risk of OSA in women with gestational diabetes	No significant differences in OSA diagnosis between controls and participants with gestational diabetes, 20% versus 31%, respectively, prepregnancy BMI-adjusted OR 1.90 (95% CI 0.52–6.88).
	age at PSG, age, and BMI				No significant differences in AHI (control vs. gestational diabetes; mean 4.2 vs. 3.8), oxygen desaturation index, snoring, and flow limitation, self-reported sleep duration between the two groups.

TABLE 25.11. (continued)

Conversions for glucose values are provided in Diabetes in America Appendix 1 Conversions. AHI, apnea-hypopnea index; BMI, body mass index; CI, confidence interval; GDM, gestational diabetes mellitus; h, hour; NGT, normal glucose tolerance; NR, not reported; OGTT, oral glucose tolerance test; OR, odds ratio; OSA, obstructive sleep apnea; PSG, polysomnogram; RR, relative risk; SDB, sleep-disordered breathing. * Many studies had other outcomes of interest, but only outcomes related to glucose metabolism are summarized in this table.

SOURCE: References are listed within the table.

THE CIRCADIAN SYSTEM AND GLUCOSE METABOLISM

The circadian system, controlled by the master circadian clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, plays a major role in regulating daily rhythms of sleep/wake cycle, feeding behavior, central and peripheral tissue metabolism, and hormonal secretions (301). The clock in the SCN is synchronized to the 24-hour day primarily by light signal via the retinohypothalamic tract. It then relays the information via hormonal and neuronal pathways to the rest of the brain and to peripheral organs, such as the heart, liver, adipose tissue, muscle, adrenals, and pancreas, which all possess "peripheral clocks," leading to coordinated rhythms and behaviors (Figure 25.6) (2,302). The central clock mechanism consists of a transcription-translation negative feedback loop involving several core clock genes including Clock (circadian locomotor output cycles kaput), Bmal1 (brain and muscle Arnt-like protein-1), Per 1-3 (Period 1-3), and Cry1-2 (Cryptochrome 1-2), as well as feedback signals from nutrient intake (303).

There is evidence that circadian disruption has detrimental effects on energy metabolism. It was first shown that Clock mutant mice shift their feeding and activity behavior to their normally inactive phase and develop obesity and the metabolic syndrome (hyperlipidemia, hepatic steatosis, hyperglycemia, and hypoinsulinemia) (304). Habitual sleep duration in this mutant animal is about 1 hour shorter than in the wild type animal, thus resulting in a condition of lifelong insufficient sleep (304). In another study, wild type mice exposed to dim light during their usual biological night were shown to shift their food intake into the inactive phase. This was associated with reduced glucose tolerance and a greater gain in body mass, suggesting that eating at an adverse circadian time may contribute to metabolic dysfunction (305).

In humans, living in modern industrialized societies with 24-hour access to light coupled with work/social obligations often leads to behaviors that are inappropriately timed relative to

SCN, suprachiasmatic nuclei.

SOURCE: Reference 2, copyright © 2014 New York Academy of Sciences, reprinted with permission

endogenous circadian rhythms. This mismatch in timing is termed "circadian misalignment." Night shift work is an example of severe circadian misalignment, as workers are awake, active, and eating during their biological night and trying to sleep and fast during their biological day. In 2004, 14.8% of all workers in the United States had work schedules differing from a daytime schedule (306). This proportion was much higher for workers in service occupations, such as security (50.6%), and for health care professionals (38.3%). Shift work is associated with abnormal glucose metabolism, including IGT and diabetes. In a retrospective study of 6,413 participants in Japan followed for 9.9 years, two groups of rotating shift workers with slightly different schedules both had a significantly increased risk of developing IGT (defined as A1c \geq 5.9% [≥41 mmol/mol]) with hazard ratios of 1.78 (95% CI 1.49–2.14) and 2.62 (95% CI 2.17-3.14) (307). In addition, longer duration of shift work, in a dose response fashion, was associated with a gradual increase in A1c levels over time in those without diabetes at baseline (308). Most cross-sectional studies, all outside the United States, have also found an association between shift work and prevalence of diabetes (Table 25.12).

To date, 11 of 12 prospective and retrospective cohort studies demonstrated that shift work was associated with an increased risk of developing diabetes (Table 25.13) (29,30,309,310,311,312,313, 314,315,316,317,318). The largest study, the Nurses' Health Study I and II, followed 177,184 participants for 18–20 years and found that those who worked rotating night shifts had increased hazard ratios for diabetes of 1.03–1.24, after adjusting for traditional diabetes risk factors, as well as BMI, with higher risk in those who had a longer duration of shift work compared to those reporting no shift work (314). The risk was estimated to be a 5% increase for every 5 years of shift work. Night shift work was found to be associated with incident diabetes in participants of the Black Women's Health Study (2005-2013), with increasing risk according to the number of years night shift work was performed (HR 1.17, 95% CI 1.04-1.31, for 1-2 years; HR 1.23, 95% CI 1.06–1.41, for 3–9 years; and HR 1.42, 95% CI 1.19–1.70, for ≥10 years) (318).

There may be several reasons why shift workers are at higher risk for developing diabetes. Besides circadian misalignment, insufficient sleep and poor sleep quality, themselves associated with increased diabetes risk, are very common

25-24

TABLE 25.12. Cross-Sectional Studies Exploring Associations Between Shift Work and Diabetes

LOCATION, YEARS (REF.)	POPULATION	SAMPLE SIZE	SHIFT WORKER	OUTCOME	RESULTS
Japan, NR (428)	Male factory workers	2,167	Day workers versus three-shift workers	Diabetes, defined as glucose level after 50 g glucose challenge, >185 mg/dL at 1 hour and >150 mg/dL at 2 hours (Japanese Diabetic Society)	Prevalence of diabetes in three-shift workers was 2.1% versus 0.9% in day workers.
Japan, 1995–1998 (429)	Employees participating in yearly check-ups, age 30–59 years	3,650	Day shift versus any shift work	Hyperglycemia, defined as FPG ≥126 mg/dL	Shift work was associated with hyperglycemia in the age group 30–39 years, OR 6.75 (95% Cl 1.31–56.1).
					No association was found in the age groups 40–49 or 50–59 years.
Sweden, 1992–1998 (430)	Employees in paper and pulp manufacturing plants, age ≥20 years	1,590	Day shift versus three-shift work	Hyperglycemia, defined as FPG ≥126 mg/dL	Three-shift work was not associated with hyperglycemia.
Japan, 2009 (431)	Male employees participating in annual	475	Day shift versus seasonal shift work versus continuous shift work	Diabetes, defined as FPG ≥126 mg/dL and A1c ≥6.5%	No association was found between shift work and diabetes in those age <45 years.
	health check-ups				Among those age ≥45 years, the association between continuous shift work and diabetes was more pronounced, OR 2.24 (95% CI 0.71–7.06) versus OR 0.61 (95% CI 0.07–5.02) in seasonal workers.

Conversions for A1c and glucose values are provided in Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin; CI, confidence interval; FPG, fasting plasma glucose; NR, not reported; OR, odds ratio.

SOURCE: References are listed within the table.

TABLE 25.13. Cohort Studies of the Relationship Between Shift Work and Incident Diabetes or Impaired Glucose Tolerance

STUDY, YEAR (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	SHIFT WORK ASSESSMENT	DIABETES ASSESSMENT	RESULTS
Stockholm Diabetes Prevention Program, 1992–2006 (309)	Sweden, mean age 47.1 years	5,432	8–10	Shift work from questionnaire	OGTT, FPG ≥126 mg/dL or 2-hour glucose value ≥200 mg/dL	Shift work was not associated with diabetes after adjusting for multiple factors, OR 1.9 (95% CI 0.8–4.4) in women and OR 0.8 (95% CI 0.4–1.7) in men.
China, 2008–2010 (310)	Retired workers from Dongfeng Motor Corporation, mean age 63.6 years	26,463	Retrospective	Shift work from questionnaire	FPG ≥126 mg/dL or report of diabetes diagnosis or use of medication	Longer shift work (10–19 years and \geq 20 years) was associated with diabetes, OR 1.10 (95% Cl 1.00–1.22) and OR 1.16 (95% Cl 1.06–1.27), respectively.
Pennsylvania, NR (311)	Retired shift workers, mean age 75.4 years	1,111	Retrospective	Work overlap 12:00–6:00 a.m., from questionnaire	Self-reported diabetes diagnosis	Longer exposures to shift work (8–14 years and >20 years) were associated with diabetes, OR 1.4 and OR 1.99, respectively.
Japan, 1993–2001 (312)	Male workers in a sash and zipper company, mean age 34.3 years	2,860	8	Dayshift, rotating two or three shift, from questionnaire	A1c ≥6.1% or report of diabetes diagnosis by physician	Two-shift work was associated with diabetes, RR 2.01 (95% Cl 1.00–4.34). No association was found for three-shift workers.
Germany, 1995–2006 (313)	Workers from a chemical corporation, mean age 38.1 years	31,346	11	Rotating shift, from work registry	Diabetes diagnosis according to chart review	Shift work was associated with diabetes, HR 1.33 (95% CI 1.14–1.55).
Nurses' Health Study I, 1988–2008 (314)	Age 42–67 years	69,269	18–20	Rotating night shift, from questionnaire	Self-reported diabetes diagnosis	Each 5 years of shift work was associated with diabetes, HR 1.05 (95% CI 1.02–1.07).
Nurses' Health Study II, 1989–2007 (314)	Age 25–42 years	107,915	18–20	Rotating night shift, from questionnaire	Self-reported diabetes diagnosis	Each 5 years of shift work was associated with diabetes, HR 1.05 (95% CI 1.01–1.08).
Japan, 1991–2001 (315)	Workers from a Japanese steel company, mean age 36.1 years	5,629	10	Alternating shift from work registry	Self-reported diabetes diagnosis by physicians or A1c \geq 6.0%	Alternate shift work was associated with diabetes, OR 1.35 (95% Cl 1.05–1.75).

Table 25.13 continues on the next page.

TABLE 25.13. (continued)

STUDY, YEAR (REF.)	POPULATION	SAMPLE SIZE	FOLLOW-UP (YEARS)	SHIFT WORK ASSESSMENT	DIABETES ASSESSMENT	RESULTS
Japan, 2002–2010 (316)	Workers from a Japanese steel company, mean age 42.3 years	8,423	8	Daytime work or shift work from questionnaire	Self-reported diabetes diagnosis by physicians, $A1c \ge 6.1\%$, or use of medication	Shift work was associated with diabetes, HR 1.24 (95% CI 1.02–1.49).
Japan, 2003–2008 (29)	Government employees, age 35–55 years	3,570	3–5	Shift work from questionnaire	Having been prescribed diabetes medication and/ or FPG ≥126 mg/dL	Shift work was not associated with diabetes, unadjusted RR 0.97 (95% CI 0.65–1.47).
Quebec Family Study, 1989–2001 (30)	Mean age 38.6 years	276	6	Questionnaire on sleep duration and shift work	Diabetes, defined as FPG ≥126 mg/dL or 2-hour glucose value ≥200 mg/dL after OGTT, or use of insulin or oral hypoglycemic agents IGT. defined as 2-hour	History of shift work was associated with diabetes/IGT, β 0.02, p=0.04.
					glucose value ≥140 mg/dL in those not meeting diabetes criteria	
Denmark, 2005–2012 (317)	Danish health care workers	7,305	7	Shift work from questionnaire	Being listed in the National Diabetes Registry*	Shift work was borderline associated with diabetes, likelihood ratio 1.27 (95% Cl 0.95–1.70).
Black Women's Health Study, U.S., 2005–2013 (318)	Age 21–69 years	28,041	8	Night shift from questionnaire (00:00 hours to 08:00 hours)	Self-reported diabetes diagnosis, with a subgroup confirmed by contacting physicians	Night shift was associated with diabetes, HRs were 1.17 (95% Cl 1.04–1.31) for 1–2 years of night-shift work, 1.23 (95% Cl 1.06–1.41) for 3–9 years, and 1.42 (95% Cl 1.19–1.70) for \geq 10 years.
						HR for those who ever worked night shift was 1.12 (95% Cl 1.01–1.23).

Conversions for A1c and glucose values are provided in Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin; Cl, confidence interval; FPG, fasting plasma glucose; HR, hazard ratio; IGT, impaired glucose tolerance; NR, not reported; OGTT, oral glucose tolerance test; OR, odds ratio; RR, relative risk.

Criteria for being listed in the National Diabetes Registry: 1. receive a diagnosis of diabetes; 2. receive diabetes-related chiropody care; 3. have blood glucose measured five times in a calendar year; 4. have at least two annual blood glucose measurements over a period of 5 consecutive years; 5. purchase prescribed oral antidiabetic medication; 6. purchase prescribed insulin.

SOURCE: References are listed within the table.

among shift workers. Compared to day workers, shift workers have higher rates of obesity and more unfavorable lifestyle factors, including physical inactivity, alcohol consumption, and habitual smoking (313,315,319). In addition, there is evidence for excessive total energy intake (319), although it is not consistent (320,321). Adjusting for adiposity and lifestyle factors attenuated the relationship between shift work and diabetes in some studies, but significant residual effects remained (312,313,314,315). One meta-analysis of cohort studies revealed that shift work was associated with incident diabetes with an odds ratio of 1.12 (95% CI 1.06-1.19) (322), while another found a pooled adjusted relative risk for rotating shift work of 1.15 (95% Cl 1.06–1.25) (323). Although the magnitude of the increased risk associated with shift work was relatively modest when other risk factors were controlled,

the findings suggest that shift work may compound the risk imparted by traditional risk factors.

Human experiments in controlled laboratory settings have provided insights into metabolic alterations under experimentally induced circadian misalignment. Ten healthy adults underwent a 10-day laboratory protocol that involved sleeping and eating on a 28-hour "day." Circadian misalignment, when the participants ate and slept 12 hours out of phase from their habitual times, was associated with a 6% increase in glucose levels despite a 22% increase in insulin concentration. Further, leptin levels decreased. Three subjects had postprandial glucose responses in a prediabetic range (324). Another carefully conducted experiment combined sleep restriction with circadian disruption and involved 24 participants studied for more than 5 weeks in a controlled laboratory

setting (325). After 3 weeks of sleep restriction to 5.6 hours per day sleep and recurring 28-hour "days," fasting and postprandial glucose levels were increased by 8% and 14%, respectively. These changes were apparently caused by decreased beta cell function, as plasma insulin decreased by 12% during fasting and 27% after meals. The metabolic derangements returned to baseline levels after 9 days of sleep recovery. There is also evidence that adverse effects of circadian misalignment on glucose metabolism can occur independently of sleep loss. Experimental circadian misalignment with sleep restriction (5 hours) in healthy volunteers led to a reduction in insulin sensitivity and an increase in inflammatory markers, compared to sleep-restricted participants who maintained regular nocturnal bedtimes, despite nearly identical sleep duration between the two groups (13). In addition, a 6-day simulated shift work

experiment in 14 healthy adults found reduced total daily energy expenditure during nightshift schedules, as well as in response to dinner consumed late at night (326). Lastly, an experimental study designed to distinguish the effects of the behavioral cycles (sleep/wake, fasting/feeding, and activity schedules), the endogenous circadian system, and circadian disruption on glucose and lipid metabolisms was conducted in 14 volunteers (327). The protocol involved two 8-day crossover studies when the behavioral cycles were aligned or misaligned (12-hour shift) with endogenous circadian rhythms. Glucose tolerance was assessed at 8 a.m. and 8 p.m. in response to an identical mixed meal. Postprandial glucose levels were 17% higher in the biological evening than in the morning, and the early phase postprandial insulin response was 27% lower in the biological evening, indicative of insufficient beta cell response. This endogenous circadian effect was much larger than that of the behavioral cycle effect. In addition, circadian misalignment (12-hour behavioral cycle inversion) increased postprandial glucose levels by 6% despite a 14% higher late phase postprandial insulin response, suggesting reduced insulin sensitivity during misalignment. This study reveals potential mechanisms by which shift workers who are awake and eating during their biological night may increase the risk of weight gain, obesity, and diabetes (326).

In patients with established diabetes, shift work may be associated with poor glycemic control, but the data are scarce. In a small study of 32 patients with diabetes, there were no differences in glycemic control between those working day and shift schedules (328). However, after being moved to a rotating shift pattern, insulin-treated patients had significant deterioration in their glycemic control after 6 months. In another study of 120 day and 120 shift workers in Thailand, fasting glucose levels were significantly lower in day compared to shift workers (329). A larger study was conducted in 296 type 1 diabetes patients in the United Kingdom, 23% of whom performed shift work (330). A1c levels were significantly

higher in shift compared to day workers with a mean 9.02% (75 mmol/mol) versus 8.35% (68 mmol/mol) (p<0.01). As the world now requires a 24-hour workforce, while the number of diabetes patients and the cost of care are increasing, attention should be paid to the metabolic health of shift workers. Pharmacotherapy improves alertness and sleep quality in those with shift work disorders, including melatonin (to improve daytime sleep) and modafinil or armodafinil (wake-promoting agents) (331). It is unknown whether these agents also help improve glucose metabolism in shift workers, but a placebo-controlled study of the metabolic impact of 1 week of sleep restriction found no beneficial effect of modafinil (12). Interestingly, a study in 43 workers on different shift schedules found that those with fast clockwise direction of shift work had lower fasting glucose levels and HOMA index than those with slow counterclockwise rotation and day workers (332). The study is limited by the small sample size, and the results need to be confirmed in a larger study.

Many individuals in modern society experience a form of mild circadian misalignment, especially during the work or school week, as they follow social rhythms imposed by professional obligations, school schedules, family, and other commitments rather than their own biological rhythms (333). The degree of misalignment is dependent on the individual's "chronotype" (333). Chronotype is a construct that captures an individual's preference for being a "morning" or "evening" person. Late chronotype is typically associated with a greater degree of misalignment between social rhythms and the circadian clock (333). Chronotype can be evaluated in several ways. In 1976, Horne and Ostberg developed the Morningness-Eveningness questionnaire to categorize respondents into five types (definitely morning, moderately morning, neither morning nor evening, moderately evening, and definitely evening) (334). These chronotypes correlate with the participants' circadian timing of core body temperature. The core body temperature minimum is a classic phase marker

and usually occurs during the second half of the habitual sleep period (334). Subsequently, Roenneberg et al. proposed the mid-sleep time on free days (MSF) as a metric of chronotype. MSF is derived from mid-sleep time (midpoint between sleep start and wake time) on weekend nights with further correction for calculated sleep debt, with the assumption that sleep timing on days when unconstrained by the social clock would more accurately reflect the underlying phase of the circadian system (335,336). A large cross-sectional study in Finland involving 4,589 participants found that those who were evening types had an odds ratio of 2.5 (95% CI 1.5–4.4) for type 2 diabetes compared to morning types. This association was independent of sleep duration and sleep sufficiency (337). Two separate cohorts (1.244 and 483 participants, respectively) provided similar findings, where eveningness was associated with increased risk of the metabolic syndrome (OR 1.4 and OR 2.2, respectively) (338,339) and diabetes (OR 2.0) (339). In addition, several genetic studies have shown that individuals carrying specific variants of the canonical circadian genes Clock and Bmal-1 had evening preference, resistance to weight loss, the metabolic syndrome, and susceptibility to type 2 diabetes (340,341,342).

Furthermore, evening chronotype in nondiabetic individuals was found to be associated with unfavorable cardiometabolic profiles (343). A study involving 119 obese short sleepers (≤6.5 hours per night) revealed that eveningness was associated with eating later and larger food portion size, an increase in BMI, and lower high-density lipoprotein (HDL) cholesterol level. Evening types were also found to have more sleep apnea and higher stress hormones. These results are suggestive of a higher risk of cardiovascular disease in this population.

The first study to address the contribution of chronotype on glycemic control in patients with type 2 diabetes involved comprehensive questionnaires to assess sleep and eating habits in 194 non-shift worker participants who all had an established diagnosis of diabetes (344). After adjusting for age, sex, race, BMI, insulin use, depressed mood, diabetic complications, and perceived sleep debt, chronotype, as assessed by MSF, was significantly associated with glycemic control (Figure 25.7). The difference in median A1c between participants in the 4th quartile of MSF compared to the 1st quartile was approximately 1.3%, a remarkably strong effect size. Besides having significant later bedtime/wake time and poorer glycemic control, participants with later chronotype were more depressed, had a higher BMI, and were significantly more likely to require insulin. This finding suggested that patients with type 2 diabetes who have a late chronotype may be more hypoinsulinemic, consistent with the findings in the Clock mutant mice. Subsequently, two studies in Japanese type 2 diabetes patients (total 826 participants) found that more evening preference as assessed by questionnaire was associated with higher A1c and lower HDL cholesterol levels, as well as poorer sleep quality (345,346).

Another neurohormone that plays an important role in circadian regulation is melatonin, secreted by the pineal gland. Its secretion is modulated by the light-dark cycle via the retinohypothalamic tract and the SCN and by the sympathetic nervous system (347). Melatonin is released during the biological night and inhibited by light exposure. Melatonin secretion follows a diurnal pattern with low levels during the day, an abrupt increase 1-2 hours before habitual bedtime, high levels throughout the night, and a progressive decrease initiated prior to habitual wake-up time (348,349). Melatonin exerts its effects through membrane receptors belonging to the class of G-protein coupled receptors (350). In mammals, there are two receptor isoforms: MT1 and MT2 (found in the brain, SCN, retina, and peripheral tissues) (351). Melatonin can entrain circadian rhythms due to the presence of MT1 and MT2 receptors in the SCN (352). In addition, both isoforms of melatonin receptors are found in the pancreatic beta cells and alpha cells (350), and melatonin has been shown to modulate insulin secretion through rather complex cascades involving several

FIGURE 25.7. Median A1c Levels Across Quartiles of Mid-Sleep Time on Free Days

Those with later chronotypes had significantly higher A1c levels and later bedtimes/wake times than those with earlier chronotypes. Error bars represent interquartile ranges. Conversions for A1c values are provided in *Diabetes in America Appendix 1 Conversions*. A1c, glycosylated hemoglobin; MSF, mid-sleep time on free days; Q, quartile. SOURCE: Reference 344

secondary messengers and possibly through alpha cell stimulation (350,353). Therefore, melatonin may act as a mediator between the central circadian regulation and peripheral metabolism, as well as an internal signal synchronizing the central circadian clock and clocks in peripheral tissues. A review has suggested that the increased duration of exposure to light that is common in modern society may inhibit melatonin release and disrupt seasonal cycles. The authors further suggest that these factors could be involved in causing metabolic disturbances (354).

Genetic studies have linked the gene encoding MT2, MTNR1B, to abnormal glucose metabolism and diabetes risk (355,356,357,358). In a study involving 19,605 Europeans, the MTNR1B intronic variant, rs10830963, was associated with a significantly increased risk of impaired fasting glucose with an odds ratio of 1.6 (355). In addition, analyses in subgroups of this population revealed an association of this genetic variant with increased type 2 diabetes risk with odds ratios of 1.19 (95% CI 1.08–1.32) (French case-control study) and 1.23 (95% CI 1.10-1.37) (Danish case-control study). This allele was associated with decreased insulin secretion after oral and intravenous glucose challenges. Another study in

1,276 healthy individuals of European ancestry revealed that this MTNR1B variant was associated with higher fasting glucose levels, decreased early insulin response, and decreased beta cell glucose sensitivity as evaluated by an oral glucose tolerance test (OGTT) and a euglycemichyperinsulinemic clamp (356). Because the effect of this allele on diabetes risk was modest, a large-scale exon resequencing was conducted in 7,632 Europeans, including 2,186 individuals with type 2 diabetes (359). This identified 40 nonsynonymous variants, including 36 very rare variants, which were associated with a much higher increased risk for type 2 diabetes (OR 3.31, 95% CI 1.78-6.18). Among the rare variants, those with partial or total loss of function (i.e., complete loss of melatonin binding and signaling capabilities), but not the neutral ones, significantly contributed to diabetes risk (OR 5.67, 95% CI 2.17-14.82).

A well-documented epidemiologic study demonstrated a link between low nocturnal melatonin secretion and development of diabetes (360). In this case-control study nested within the Nurses' Health Study Cohort, 370 women who developed type 2 diabetes during a follow-up of 10–12 years were matched with 370 controls. Women with the lowest baseline urine secretion of 6-sulfatoxymelatonin, a major metabolite of melatonin, had an increased risk of subsequent diabetes development with an odds ratio of 2.17 (95% CI 1.18-3.98) compared to those with the highest levels, after adjusting for demographic factors, lifestyle habits, sleep duration, snoring, and biomarkers of inflammation and endothelial dysfunction. The authors postulated several mechanisms by which low melatonin may be associated with diabetes, including reduced sleep duration and sleep apnea, which are known to be associated with low melatonin levels (361,362) but could not be accurately captured by the study questionnaires.

Increasing melatonin level by exogenous supplementation in patients with diabetes was tested in a randomized, double blinded, cross-over study involving 36 type 2 diabetes patients with insomnia (363). Prolonged-release melatonin administration significantly improved sleep efficiency and reduced wake time after sleep onset as assessed by actigraphy at 3 weeks, but without changes in glucose levels. A1c improved significantly at 5 months during the open-labeled phase (-0.6% compared to baseline) without changes in C-peptide levels, but the magnitude of this improvement was not predicted by sleep improvements as assessed by actigraphy. The study was limited by

the lack of assessment of the circadian system. Interestingly, an experimental study in 21 healthy women revealed that acute melatonin administration, both in the morning and evening, resulted in IGT as assessed by OGTT (364). Therefore, the role of melatonin in human glucose metabolism remains controversial.

Taken together, these human experimental studies, results from cross-sectional studies, and genetic data support the contribution of the circadian system and sleep timing in metabolic regulation. Prospective and interventional studies are required to evaluate the role of the circadian system in the development and severity of type 2 diabetes.

COMBINED EFFECTS OF MULTIPLE DISTURBANCES OF SLEEP AND/OR CIRCADIAN FUNCTION ON GLUCOSE METABOLISM

While there has been little systematic study of the combined effects of the presence of several subtypes of sleep disturbances in the same individual, this situation may be very common. For example, since population studies have associated shift work with higher BMI. it is possible that a substantial proportion of shift workers in the United States have OSA, while suffering at the same time from insufficient sleep and circadian misalignment. Another example is that of insomnia with short sleep duration. Lastly, individuals with poor sleep quality, particularly shallow sleep that may be easily fragmented, often have shorter sleep duration. Despite the fact that coexistence of multiple sleep disturbances may be a common condition, there have been few studies addressing the potential metabolic consequences.

In a cross-sectional study of insomnia evaluating glucose regulation by an OGTT, 14 nondiabetic participants with insomnia and short sleep (PSG confirmed sleep efficiency ≤80% and overnight sleeping ≤6 hours) were compared to 14 participants with insomnia and >6 hours of sleep (365). While A1c and glucose values were similar between the two groups, those with insomnia with short-sleep had lower fasting insulin and glucose-stimulated insulin secretion, but increased insulin sensitivity. The authors speculated that these alterations in glucose metabolism could represent an adaptive mechanism in response to increased fuel needs related to the physiologic hyperarousal thought to be a hallmark of insomnia. Furthermore. analyses of the Penn State Cohort, a large prospective study of 1,741 participants who had one night of laboratory PSG and were followed for 14 years, found that men with a complaint of insomnia for ≥1 year who also had a sleep duration of <6 hours on PSG had significantly higher mortality compared to men with "normal sleep duration and no insomnia" (OR 4.00, 95% CI 1.14–13.99) after adjusting for confounders (366). This analysis suggested that "insomnia with short sleep" may be a more biologically severe phenotype than insomnia with normal sleep duration, at least in men. Insomnia with short sleep in women was not associated with increased mortality. In the same cohort, the risk of type 2 diabetes was nearly threefold higher in individuals with insomnia with PSG-defined sleep duration <5 hours, irrespective of sex, while those with insomnia with longer sleep duration did not have an increased risk (48). The fact that sleep duration was assessed via a single night of PSG is a limitation of these Penn State Cohort

studies. In another cross-sectional study of 15,227 U.S. Hispanics/Latinos, those with short sleep (self-reported <6 hours) and insomnia were more likely to have diabetes (OR 1.46, 95% Cl 1.02– 2.11) than average sleepers (>6–9 hours) with insomnia (OR 1.28, 95% Cl 1.02– 1.61) (367). These associations, however, were attenuated after adjusting for BMI.

A combination between OSA and short sleep duration has been explored in a few studies. In participants of the Korean Genome and Epidemiology Study, the combination of self-reported short sleep duration (<5 hours) and presence of OSA (as assessed by a portable home sleep device) was associated with a much higher risk of having visceral obesity (OR 4.40, 95% CI 1.80–10.77) than sleeping ≥7 hours and not having OSA (368). Interestingly, the adjusted odds ratio for visceral obesity was 2.05 (95% Cl 1.09–3.86) in individuals sleeping <5 hours compared with those sleeping >7 hours, while the adjusted odds ratio for visceral obesity was 1.57 (95% Cl 1.08-2.26) in individuals with OSA compared with those without OSA. This study thus suggests a synergy in the adverse effects of insufficient sleep and OSA, respectively, on adiposity. Another study in 136 Japanese participants with and without the metabolic syndrome,

matched by age and BMI, revealed that the severity of OSA (as measured by a portable monitor) was comparable between the two groups (369). However, participants with the metabolic syndrome had significantly shorter sleep duration (5.8 vs. 6.1 hours) assessed by actigraphy. The combination of insufficient sleep and OSA could potentially also affect glycemic control in type 2 diabetes. In a small study of 71 type 2 diabetes patients with untreated OSA, sleep duration (measured by actigraphy) was inversely associated with A1c, while AHI itself was not. Each hour of reduction in sleep duration was associated with a 4.8% increase in A1c above its reference value (95% CI 1.5-8.0) (370).

Shift workers may be at risk of having sleep disturbances aside from having circadian misalignment. In a study of

CONCLUSIONS

Disturbances of different aspects of sleep, including sleep duration, quality, respiratory function during sleep, and circadian timing have all been linked to abnormal glucose metabolism. Epidemiologic studies controlled for age and adiposity in the analyses. Many studies also included some measure of self-perceived stress or of socioeconomic status (e.g., using income and/or education as surrogate measures) in their analyses. The 26,463 workers in China, shift work was significantly associated with poor sleep quality as assessed by questionnaires. Sleep quality improved after leaving shift work. In another study of 121 hospital employees performing shift work and 150 day-workers, shift work status was associated with poor sleep quality, as well as with the metabolic syndrome (OR 2.29, 95% CI 1.12-4.70) (371). Interestingly, poor sleep quality did not mediate the relationship between shift work and the metabolic syndrome. The combined presence of shift work and OSA has also been explored in a few studies, although none addressed metabolic aspects. Two studies of shift workers with OSA (total 52 participants) found that the AHI assessed by PSG was significantly higher if the PSG was performed after a night shift compared to after a day shift (372,373).

epidemiologic evidence linking sleep and adverse metabolic outcomes has come from a very large number of studies conducted in a wide variety of social and geographic environments, as well as in populations with very different demographic characteristics. Nonetheless, the findings have been remarkably consistent. Well-controlled in-laboratory experiments have provided causative evidence and suggested mechanistic pathways. As Whether the repeated exposure to a higher severity of OSA during daytime sleep after a night of work may affect the metabolic health of shift workers is not known. Lastly, an experimental study has compared the metabolic impact of 8 days of sleep restriction (5 hours per night) with or without circadian misalignment. The reduction in insulin sensitivity (derived from intravenous glucose tolerance testing) was nearly twofold higher when the subjects were exposed to both insufficient sleep and circadian misalignment than when they were exposed to sleep restriction alone (13).

The existing evidence thus suggests that some combinations of sleep disturbances may be more detrimental to metabolic health than each component alone, but more research in this area is needed.

the prevalence and costs of care for the metabolic syndrome, type 2 diabetes, and gestational diabetes show no signs of decline, the efficacy and effectiveness of interventions that optimize sleep and circadian function to prevent the development or reduce the severity of these metabolic disorders need to be urgently evaluated.

LIST OF ABBREVIATIONS

A1c	glycosylated hemoglobin	NHANES	National Health and Nutrition
AHI	apnea-hypopnea index		Examination Survey
BMI	body mass index	NREM	non-REM sleep
Cl	confidence interval	OGTT	oral glucose tolerance test
CPAP	continuous positive airway pressure	OR	odds ratio
EEG	electroencephalogram	OSA	obstructive sleep apnea
GHTN	gestational hypertension	PSG	polysomnography/polysomnogram
HDL	high-density lipoprotein	PSQI	Pittsburgh Sleep Quality Index
HOMA/HOMA-IR	homeostatic model assessment,	RCT	randomized controlled trial
	an index of insulin resistance	REM	rapid-eye-movement sleep
НРА	hypothalamic-pituitary-adrenal	ROS	reactive oxygen species
IGT	impaired glucose tolerance	RR	relative risk
IL	interleukin	SCN	suprachiasmatic nuclei
IVGTT	intravenous glucose tolerance test	SWS	slow wave sleep
MSF	mid-time sleep on free days	TNF	tumor necrosis factor
MT1/MT2	melatonin receptors 1 and 2		

CONVERSIONS

Conversions for A1c and glucose values are provided in *Diabetes in America Appendix 1 Conversions.*

ACKNOWLEDGMENTS/FUNDING

The authors acknowledge the contributions of Dr. Esra Tasali and Dr. Jan Polak for their comments on the first draft of this chapter. Large portions of this chapter were previously published by the New York Academy of Sciences (NYAS), and permission to reproduce the material was obtained from the Editor at NYAS. Dr. Reutrakul was supported by research grants from Merck. Dr. Van Cauter was supported by grants from Merck, AstraZeneca, and Shire.

DUALITY OF INTEREST

Drs. Reutrakul, Punjabi, and Van Cauter reported no conflicts of interest. Dr. Reutrakul received speaker honoraria from Sanofi, Novo Nordisk, and Medtronic, and is the recipient of investigator-initiated grant support from Merck. Dr. Punjabi has received research grant support from Philips Respironics and ResMed that is unrelated to the current work. Dr. Van Cauter has served as a consultant for Shire, Philips Respironics, Pfizer, and Vanda Pharmaceuticals, and is the recipient of investigator-initiated grant support from Shire, Merck, and AstraZeneca.

REFERENCES

- National Heart, Lung, and Blood Institute: What are sleep deprivation and deficiency? [article online], 2012. Available from https://www.nhlbi.nih.gov/health/ health-topics/topics/sdd. Accessed 31 March 2016
- Reutrakul S, Van Cauter E: Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. *Ann N Y Acad Sci* 1311:151–173, 2014
- Koren D, O'Sullivan KL, Mokhlesi B: Metabolic and glycemic sequelae of sleep disturbances in children and adults. *Curr Diab Rep* 15:562, 2015
- 4. Izci-Balserak B, Pien GW: The relationship and potential mechanistic pathways between sleep disturbances and maternal hyperglycemia. *Curr Diab Rep* 14:459, 2014
- National Heart, Lung, and Blood Institute: How much sleep is enough? [article online], 2012. Available from https://www. nhlbi.nih.gov/health/health-topics/topics/ sdd/howmuch. Accessed 31 March 2016
- National Sleep Foundation: 2009 Sleep in America poll—health and safety [article online], 2016. Available from https:// sleepfoundation.org/sleep-polls-data/ sleep-in-america-poll/2009-health-andsafety. Accessed 31 March 2016
- Krueger PM, Friedman EM: Sleep duration in the United States: a cross-sectional population-based study. Am J Epidemiol 169:1052–1063, 2009

- Spiegel K, Leproult R, Van Cauter E: Impact of sleep debt on metabolic and endocrine function. *Lancet* 354:1435– 1439, 1999
- 9. Leproult R, Van Cauter E: Role of sleep and sleep loss in hormonal release and metabolism. *Endocr Dev* 17:11–21, 2010
- Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ: Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med 157:549–557, 2012
- 11. Nedeltcheva AV, Kessler L, Imperial J, Penev PD: Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metab 94:3242–3250, 2009
- 12. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK: Sleep restriction for 1 week reduces insulin sensitivity in healthy men. *Diabetes* 59:2126–2133, 2010
- 13. Leproult R, Holmback U, Van Cauter E: Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. *Diabetes* 63:1860–1869, 2014
- van Leeuwen WM, Hublin C, Sallinen M, Harma M, Hirvonen A, Porkka-Heiskanen T: Prolonged sleep restriction affects glucose metabolism in healthy young men. Int J Endocrinol 2010:108641, 2010

- Leproult R, Deliens G, Gilson M, Peigneux P: Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. *Sleep* 38:707– 715, 2015
- Killick R, Hoyos CM, Melehan KL, Dungan GC, 2nd, Poh J, Liu PY: Metabolic and hormonal effects of 'catch-up' sleep in men with chronic, repetitive, lifestyle-driven sleep restriction. *Clin Endocrinol (Oxf)* 83:498–507, 2015
- Ayas NT, White DP, Al-Delaimy WK, Manson JE, Stampfer MJ, Speizer FE, Patel S, Hu FB: A prospective study of self-reported sleep duration and incident diabetes in women. *Diabetes Care* 26:380–384, 2003
- Beihl DA, Liese AD, Haffner SM: Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann Epidemiol 19:351–357, 2009
- Bjorkelund C, Bondyr-Carlsson D, Lapidus L, Lissner L, Mansson J, Skoog I, Bengtsson C: Sleep disturbances in midlife unrelated to 32-year diabetes incidence: the prospective population study of women in Gothenburg. *Diabetes Care* 28:2739–2744, 2005
- 20. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, Rundle AG, Zammit GK, Malaspina D: Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. *Sleep* 30:1667–1673, 2007

- 21. Holliday EG, Magee CA, Kritharides L, Banks E, Attia J: Short sleep duration is associated with risk of future diabetes but not cardiovascular disease: a prospective study and meta-analysis. *PLOS ONE* 8:e82305, 2013
- Tuomilehto H, Peltonen M, Partinen M, Lavigne G, Eriksson JG, Herder C, Aunola S, Keinanen-Kiukaanniemi S, Ilanne-Parikka P, Uusitupa M, Tuomilehto J, Lindstrom J; Finnish Diabetes Prevention Study Group: Sleep duration, lifestyle intervention, and incidence of type 2 diabetes in impaired glucose tolerance: the Finnish Diabetes Prevention Study. *Diabetes Care* 32:1965–1971, 2009
- von Ruesten A, Weikert C, Fietze I, Boeing H: Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PLOS ONE 7:e30972, 2012
- 24. Xu Q, Song Y, Hollenbeck A, Blair A, Schatzkin A, Chen H: Day napping and short night sleeping are associated with higher risk of diabetes in older adults. *Diabetes Care* 33:78–83, 2010
- 25. Yaggi HK, Araujo AB, McKinlay JB: Sleep duration as a risk factor for the development of type 2 diabetes. *Diabetes Care* 29:657–661, 2006
- 26. Hayashino Y, Fukuhara S, Suzukamo Y, Okamura T, Tanaka T, Ueshima H; HIPOP-OHP Research Group: Relation between sleep quality and quantity, quality of life, and risk of developing diabetes in healthy workers in Japan: the High-risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) Study. BMC Public Health 7:129, 2007
- Mallon L, Broman JE, Hetta J: High incidence of diabetes in men with sleep complaints or short sleep duration: a 12-year follow-up study of a middle-aged population. *Diabetes Care* 28:2762–2767, 2005
- Boyko EJ, Seelig AD, Jacobson IG, Hooper TI, Smith B, Smith TC, Crum-Cianflone NF; Millennium Cohort Study Team: Sleep characteristics, mental health, and diabetes risk: a prospective study of U.S. military service members in the Millennium Cohort Study. *Diabetes Care* 36:3154–3161, 2013
- 29. Kita T, Yoshioka E, Satoh H, Saijo Y, Kawaharada M, Okada E, Kishi R: Short sleep duration and poor sleep quality increase the risk of diabetes in Japanese workers with no family history of diabetes. *Diabetes Care* 35:313–318, 2012

- Chaput JP, Despres JP, Bouchard C, Astrup A, Tremblay A: Sleep duration as a risk factor for the development of type 2 diabetes or impaired glucose tolerance: analyses of the Quebec Family Study. Sleep Med 10:919–924, 2009
- Gutierrez-Repiso C, Soriguer F, Rubio-Martin E, Esteva de Antonio I, Ruiz de Adana MS, Almaraz MC, Olveira-Fuster G, Morcillo S, Valdes S, Lago-Sampedro AM, Garcia-Fuentes E, Rojo-Martinez G: Nighttime sleep duration and the incidence of obesity and type 2 diabetes. Findings from the prospective Pizarra study. *Sleep Med* 15:1398–1404, 2014
- 32. Heianza Y, Kato K, Fujihara K, Tanaka S, Kodama S, Hanyu O, Sato K, Sone H: Role of sleep duration as a risk factor for type 2 diabetes among adults of different ages in Japan: the Niigata Wellness Study. *Diabet Med* 31:1363–1367, 2014
- Cappuccio FP, D'Elia L, Strazzullo P, Miller MA: Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. *Diabetes Care* 33:414–420, 2010
- 34. Knutson KL, Ryden AM, Mander BA, Van Cauter E: Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. *Arch Intern Med* 166:1768–1774, 2006
- 35. Ohkuma T, Fujii H, Iwase M, Kikuchi Y, Ogata S, Idewaki Y, Ide H, Doi Y, Hirakawa Y, Nakamura U, Kitazono T: Impact of sleep duration on obesity and the glycemic level in patients with type 2 diabetes: the Fukuoka Diabetes Registry. *Diabetes Care* 36:611–617, 2013
- Kim BK, Kim BS, An SY, Lee MS, Choi YJ, Han SJ, Chung YS, Lee KW, Kim DJ: Sleep duration and glycemic control in patients with diabetes mellitus: Korea National Health and Nutrition Examination Survey 2007–2010. J Korean Med Sci 28:1334– 1339, 2013
- Zheng Y, Wang A, Pan C, Lu J, Dou J, Lu Z, Ba J, Wang B, Mu Y: Impact of night sleep duration on glycemic and triglyceride levels in Chinese with different glycemic status. J Diabetes 7:24–30, 2015
- 38. Knutson KL, Van Cauter E, Zee P, Liu K, Lauderdale DS: Cross-sectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care 34:1171–1176, 2011
- Trento M, Broglio F, Riganti F, Basile M, Borgo E, Kucich C, Passera P, Tibaldi P, Tomelini M, Cavallo F, Ghigo E, Porta M:

Sleep abnormalities in type 2 diabetes may be associated with glycemic control. *Acta Diabetol* 45:225–229, 2008

- 40. Bergman RN: Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. *Diabetes* 38:1512–1527, 1989
- 41. Tasali E, Leproult R, Ehrmann DA, Van Cauter E: Slow-wave sleep and the risk of type 2 diabetes in humans. *Proc Natl Acad Sci U S A* 105:1044–1049, 2008
- 42. Stamatakis KA, Punjabi NM: Effects of sleep fragmentation on glucose metabolism in normal subjects. *Chest* 137:95–101, 2010
- American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA, American Psychiatric Publishing, 2013
- 44. Engeda J, Mezuk B, Ratliff S, Ning Y: Association between duration and quality of sleep and the risk of pre-diabetes: evidence from NHANES. *Diabet Med* 30:676–680, 2013
- Liu J, Hay J, Faught BE: The association of sleep disorder, obesity status, and diabetes mellitus among US adults—the NHANES 2009–2010 survey results. Int J Endocrinol 2013:234129, 2013
- Foley D, Ancoli-Israel S, Britz P, Walsh J: Sleep disturbances and chronic disease in older adults: results of the 2003 National Sleep Foundation Sleep in America Survey. J Psychosom Res 56:497–502, 2004
- 47. Budhiraja R, Roth T, Hudgel DW, Budhiraja P, Drake CL: Prevalence and polysomnographic correlates of insomnia comorbid with medical disorders. *Sleep* 34:859–867, 2011
- 48. Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, Bixler EO: Insomnia with objective short sleep duration is associated with type 2 diabetes: a population-based study. *Diabetes Care* 32:1980–1985, 2009
- 49. Eriksson AK, Ekbom A, Granath F, Hilding A, Efendic S, Ostenson CG: Psychological distress and risk of pre-diabetes and type 2 diabetes in a prospective study of Swedish middle-aged men and women. Diabet Med 25:834–842, 2008
- 50. Kawakami N, Takatsuka N, Shimizu H: Sleep disturbance and onset of type 2 diabetes. *Diabetes Care* 27:282–283, 2004
- 51. Meisinger C, Heier M, Loewel H; MONICA/ KORA Augsburg Cohort Study: Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population. *Diabetologia* 48:235–241, 2005

- Nilsson PM, Roost M, Engstrom G, Hedblad B, Berglund G: Incidence of diabetes in middle-aged men is related to sleep disturbances. *Diabetes Care* 27:2464–2469, 2004
- 53. Olsson L, Ahlbom A, Grill V, Midthjell K, Carlsson S: Sleep disturbances and low psychological well-being are associated with an increased risk of autoimmune diabetes in adults. Results from the Nord-Trondelag Health Study. *Diabetes Res Clin Pract* 98:302–311, 2012
- 54. Rod NH, Vahtera J, Westerlund H, Kivimaki M, Zins M, Goldberg M, Lange T: Sleep disturbances and cause-specific mortality: results from the GAZEL cohort study. Am J Epidemiol 173:300–309, 2011
- Zhang J, Lam SP, Li SX, Li AM, Wing YK: The longitudinal course and impact of non-restorative sleep: a five-year community-based follow-up study. *Sleep Med* 13:570–576, 2012
- Knowler WC, Pettitt DJ, Savage PJ, Bennett PH: Diabetes incidence in Pima Indians: contributions of obesity and parental diabetes. *Am J Epidemiol* 113:144–156, 1981
- 57. Shaten BJ, Smith GD, Kuller LH, Neaton JD: Risk factors for the development of type II diabetes among men enrolled in the usual care group of the Multiple Risk Factor Intervention Trial. *Diabetes Care* 16:1331–1339, 1993
- Burchfiel CM, Curb JD, Rodriguez BL, Yano K, Hwang LJ, Fong KO, Marcus EB: Incidence and predictors of diabetes in Japanese-American men. The Honolulu Heart Program. Ann Epidemiol 5:33–43, 1995
- 59. Sargeant LA, Wareham NJ, Khaw KT: Family history of diabetes identifies a group at increased risk for the metabolic consequences of obesity and physical inactivity in EPIC-Norfolk: a population-based study. The European Prospective Investigation into Cancer. Int J Obes Relat Metab Disord 24:1333–1339, 2000
- Harrison TA, Hindorff LA, Kim H, Wines RC, Bowen DJ, McGrath BB, Edwards KL: Family history of diabetes as a potential public health tool. *Am J Prev Med* 24:152– 159, 2003
- 61. Erasmus RT, Blanco Blanco E, Okesina AB, Mesa Arana J, Gqweta Z, Matsha T: Importance of family history in type 2 black South African diabetic patients. *Postgrad Med J* 77:323–325, 2001
- 62. Tsai YW, Kann NH, Tung TH, Chao YJ, Lin CJ, Chang KC, Chang SS, Chen JY: Impact of subjective sleep quality on glycemic control in type 2 diabetes mellitus. *Fam Pract* 29:30–35, 2012

- 63. Tang Y, Meng L, Li D, Yang M, Zhu Y, Li C, Jiang Z, Yu P, Li Z, Song H, Ni C: Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chin Med J (Engl) 127:3543–3547, 2014
- 64. Kushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC: Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med 2:389–396, 2001
- 65. Chasens ER, Yang K: Insomnia and physical activity in adults with prediabetes. *Clin Nurs Res* 21:294–308, 2012
- 66. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, Wagner H, Thorne D, Popp K, Rowland L, Welsh A, Balwinski S, Redmond D: Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 9:335–352, 2000
- Grassi G, Dell'Oro R, Quarti-Trevano F, Scopelliti F, Seravalle G, Paleari F, Gamba PL, Mancia G: Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. *Diabetologia* 48:1359–1365, 2005
- Tentolouris N, Argyrakopoulou G, Katsilambros N: Perturbed autonomic nervous system function in metabolic syndrome. *Neuromolecular Med* 10:169– 178, 2008
- 69. Irwin M, Thompson J, Miller C, Gillin JC, Ziegler M: Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. *J Clin Endocrinol Metab* 84:1979–1985, 1999
- Reynolds AC, Dorrian J, Liu PY, Van Dongen HP, Wittert GA, Harmer LJ, Banks S: Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. *PLOS ONE* 7:e41218, 2012
- 71. Leproult R, Copinschi G, Buxton O, Van Cauter E: Sleep loss results in an elevation of cortisol levels the next evening. *Sleep* 20:865–870, 1997
- 72. Plat L, Leproult R, L'Hermite-Baleriaux M, Fery F, Mockel J, Polonsky KS, Van Cauter E: Metabolic effects of shortterm elevations of plasma cortisol are more pronounced in the evening than in the morning. J Clin Endocrinol Metab 84:3082–3092, 1999
- Stamatakis KA, Punjabi NM: Effects of sleep fragmentation on glucose metabolism in normal subjects. *Chest* 137:95–101, 2010

- Mullington JM, Simpson NS, Meier-Ewert HK, Haack M: Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab 24:775–784, 2010
- 75. Boudjeltia KZ, Faraut B, Stenuit P, Esposito MJ, Dyzma M, Brohee D, Ducobu J, Vanhaeverbeek M, Kerkhofs M: Sleep restriction increases white blood cells, mainly neutrophil count, in young healthy men: a pilot study. Vasc Health Risk Manag 4:1467–1470, 2008
- 76. Faraut B, Boudjeltia KZ, Dyzma M, Rousseau A, David E, Stenuit P, Franck T, Van Antwerpen P, Vanhaeverbeek M, Kerkhofs M: Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. *Brain Behav Immun* 25:16–24, 2011
- Boyum A, Wiik P, Gustavsson E, Veiby OP, Reseland J, Haugen AH, Opstad PK: The effect of strenuous exercise, calorie deficiency and sleep deprivation on white blood cells, plasma immunoglobulins and cytokines. Scand J Immunol 43:228–235, 1996
- Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, Chrousos GP: Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89:2119–2126, 2004
- Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S: Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 166:1756–1762, 2006
- van Leeuwen WM, Lehto M, Karisola P, Lindholm H, Luukkonen R, Sallinen M, Harma M, Porkka-Heiskanen T, Alenius H: Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. *PLOS ONE* 4:e4589, 2009
- Shearer WT, Reuben JM, Mullington JM, Price NJ, Lee BN, Smith EO, Szuba MP, Van Dongen HP, Dinges DF: Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol 107:165–170, 2001
- Wieser V, Moschen AR, Tilg H: Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp (Warsz) 61:119–125, 2013
- 83. Spiegel K, Tasali E, Penev P, Van Cauter E: Brief communication: sleep curtailment in healthy young men is associated with

decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. *Ann Intern Med* 141:846–850, 2004

- Morselli LL, Guyon A, Spiegel K: Sleep and metabolic function. *Pflugers Arch* 463:139–160, 2012
- Killick R, Banks S, Liu PY: Implications of sleep restriction and recovery on metabolic outcomes. *J Clin Endocrinol Metab* 97:3876–3890, 2012
- Guilleminault C, Powell NB, Martinez S, Kushida C, Raffray T, Palombini L, Philip P: Preliminary observations on the effects of sleep time in a sleep restriction paradigm. *Sleep Med* 4:177–184, 2003
- Spiegel K, Leproult R, L'Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E: Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89:5762–5771, 2004
- Mullington JM, Chan JL, Van Dongen HP, Szuba MP, Samaras J, Price NJ, Meier-Ewert HK, Dinges DF, Mantzoros CS: Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol 15:851–854, 2003
- Hanlon EC, Tasali E, Leproult R, Stuhr KL, Doncheck E, de Wit H, Hillard CJ, Van Cauter E: Sleep restriction enhances the daily rhythm of circulating levels of endocannabinoid 2-arachidonoylglycerol. *Sleep* 39:653–664, 2016
- Broussard JL, Kilkus JM, Delebecque F, Abraham V, Day A, Whitmore HR, Tasali E: Elevated ghrelin predicts food intake during experimental sleep restriction. *Obesity (Silver Spring)* 24:132–138, 2016
- 91. Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD: Insufficient sleep undermines dietary efforts to reduce adiposity. *Ann Intern Med* 153:435–441, 2010
- Omisade A, Buxton OM, Rusak B: Impact of acute sleep restriction on cortisol and leptin levels in young women. *Physiol Behav* 99:651–656, 2010
- Schmid SM, Hallschmid M, Jauch-Chara K, Born J, Schultes B: A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 17:331–334, 2008
- 94. Knutson KL, Galli G, Zhao X, Mattingly M, Cizza G; NIDDK Sleep Extension Study: No association between leptin levels and sleep duration or quality in obese adults. *Obesity (Silver Spring)* 19:2433–2435, 2011

- 95. Taheri S, Lin L, Austin D, Young T, Mignot E: Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. *PLOS Med* 1:e62, 2004
- 96. Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD: Sleep curtailment is accompanied by increased intake of calories from snacks. *Am J Clin Nutr* 89:126–133, 2009
- 97. Bosy-Westphal A, Hinrichs S, Jauch-Chara K, Hitze B, Later W, Wilms B, Settler U, Peters A, Kiosz D, Muller MJ: Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. *Obes Facts* 1:266–273, 2008
- 98. St-Onge MP, Roberts AL, Chen J, Kelleman M, O'Keeffe M, RoyChoudhury A, Jones PJ: Short sleep duration increases energy intakes but does not change energy expenditure in normalweight individuals. *Am J Clin Nutr* 94:410–416, 2011
- 99. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, Wright KP, Jr.: Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. *Proc Natl Acad Sci U S A* 110:5695–5700, 2013
- 100. Spaeth AM, Dinges DF, Goel N: Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. *Sleep* 36:981– 990, 2013
- 101. Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H, Born J, Schultes B: Short-term sleep loss decreases physical activity under freeliving conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr 90:1476–1482, 2009
- 102. Benedict C, Brooks SJ, O'Daly OG, Almen MS, Morell A, Aberg K, Gingnell M, Schultes B, Hallschmid M, Broman JE, Larsson EM, Schioth HB: Acute sleep deprivation enhances the brain's response to hedonic food stimuli: an fMRI study. J Clin Endocrinol Metab 97:E443– E447, 2012
- 103. St-Onge MP, McReynolds A, Trivedi ZB, Roberts AL, Sy M, Hirsch J: Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. *Am J Clin Nutr* 95:818–824, 2012
- 104. Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP: Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. *J Physiol* 589:235–244, 2011

- 105. Bromley LE, Booth JN, 3rd, Kilkus JM, Imperial JG, Penev PD: Sleep restriction decreases the physical activity of adults at risk for type 2 diabetes. *Sleep* 35:977– 984, 2012
- 106. Booth JN, Bromley LE, Darukhanavala AP, Whitmore HR, Imperial JG, Penev PD: Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep. Obesity (Silver Spring) 20:278– 284, 2012
- 107. Lopez-Garcia E, Faubel R, Leon-Munoz L, Zuluaga MC, Banegas JR, Rodriguez-Artalejo F: Sleep duration, general and abdominal obesity, and weight change among the older adult population of Spain. *Am J Clin Nutr* 87:310–316, 2008
- 108. Hairston KG, Bryer-Ash M, Norris JM, Haffner S, Bowden DW, Wagenknecht LE: Sleep duration and five-year abdominal fat accumulation in a minority cohort: the IRAS family study. *Sleep* 33:289–295, 2010
- 109. Watanabe M, Kikuchi H, Tanaka K, Takahashi M: Association of short sleep duration with weight gain and obesity at 1-year follow-up: a large-scale prospective study. *Sleep* 33:161–167, 2010
- 110. Chaput JP, Despres JP, Bouchard C, Tremblay A: The association between sleep duration and weight gain in adults: a 6-year prospective study from the Quebec Family Study. *Sleep* 31:517–523, 2008
- Broussard J, Brady MJ: The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract Res Clin Endocrinol Metab 24:763–773, 2010
- Ahima RS, Saper CB, Flier JS, Elmquist JK: Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 21:263– 307, 2000
- 113. Hucking K, Hamilton-Wessler M, Ellmerer M, Bergman RN: Burst-like control of lipolysis by the sympathetic nervous system in vivo. *J Clin Invest* 111:257–264, 2003
- 114. Broussard JL, Chapotot F, Abraham V, Day A, Delebecque F, Whitmore HR, Tasali E: Sleep restriction increases free fatty acids in healthy men. *Diabetologia* 58:791–798, 2015
- 115. Knutson KL, Leproult R: Apples to oranges: comparing long sleep to short sleep. *J Sleep Res* 19:118, 2010
- 116. Punjabi NM: The epidemiology of adult obstructive sleep apnea. *Proc Am Thorac Soc* 5:136–143, 2008
- 117. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM: Increased prevalence of sleep-disordered breathing in adults. *Am J Epidemiol* 177:1006–1014, 2013

- Young T, Evans L, Finn L, Palta M: Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. *Sleep* 20:705–706, 1997
- Kapur V, Strohl KP, Redline S, Iber C, O'Connor G, Nieto J: Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath 6:49–54, 2002
- 120. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 22:667–689, 1999
- 121. Aurora RN, Punjabi NM: Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. *Lancet Respir Med* 1:329–338, 2013
- 122. Louis M, Punjabi NM: Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. *J Appl Physiol* 106:1538–1544, 2009
- 123. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE; Sleep Heart Health Study Investigators: Sleepdisordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 160:521– 530, 2004
- 124. Reichmuth KJ, Austin D, Skatrud JB, Young T: Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med 172:1590– 1595, 2005
- Botros N, Concato J, Mohsenin V, Selim B, Doctor K, Yaggi HK: Obstructive sleep apnea as a risk factor for type 2 diabetes. *Am J Med* 122:1122–1127, 2009
- 126. Celen YT, Hedner J, Carlson J, Peker Y: Impact of gender on incident diabetes mellitus in obstructive sleep apnea: a 16-year follow-up. *J Clin Sleep Med* 6:244–250, 2010
- 127. Lindberg E, Theorell-Haglow J, Svensson M, Gislason T, Berne C, Janson C: Sleep apnea and glucose metabolism: a longterm follow-up in a community-based sample. Chest 142:935–942, 2012
- 128. Marshall NS, Wong KK, Phillips CL, Liu PY, Knuiman MW, Grunstein RR: Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study? J Clin Sleep Med 5:15–20, 2009
- 129. Muraki I, Tanigawa T, Yamagishi K, Sakurai S, Ohira T, Imano H, Kiyama M, Kitamura A, Sato S, Shimamoto T, Konishi M, Iso H; CIRCS Investigators: Nocturnal intermittent hypoxia and metabolic syndrome; the effect of being overweight: the CIRCS study. J Atheroscler Thromb 17:369–377, 2010

- 130. Appleton SL, Vakulin A, McEvoy RD, Wittert GA, Martin SA, Grant JF, Taylor AW, Antic NA, Catcheside PG, Adams RJ: Nocturnal hypoxemia and severe obstructive sleep apnea are associated with incident type 2 diabetes in a population cohort of men. J Clin Sleep Med 11:609–614, 2015
- Kendzerska T, Gershon AS, Hawker G, Tomlinson G, Leung RS: Obstructive sleep apnea and incident diabetes. A historical cohort study. *Am J Respir Crit Care Med* 190:218–225, 2014
- 132. Wang X, Bi Y, Zhang Q, Pan F: Obstructive sleep apnoea and the risk of type 2 diabetes: a meta-analysis of prospective cohort studies. *Respirology* 18:140–146, 2013
- 133. Aronsohn RS, Whitmore H, Van Cauter E, Tasali E: Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med 181:507–513, 2010
- 134. Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, Wadden TA, Kelley D, Wing RR, Sunyer FX, Darcey V, Kuna ST; Sleep AHEAD Research Group: Obstructive sleep apnea among obese patients with type 2 diabetes. *Diabetes Care* 32:1017–1019, 2009
- 135. Resnick HE, Redline S, Shahar E, Gilpin A, Newman A, Walter R, Ewy GA, Howard BV, Punjabi NM; Sleep Heart Health Study: Diabetes and sleep disturbances: findings from the Sleep Heart Health Study. *Diabetes Care* 26:702–709, 2003
- 136. Laaban JP, Daenen S, Leger D, Pascal S, Bayon V, Slama G, Elgrably F: Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients. *Diabetes Metab* 35:372–377, 2009
- 137. Einhorn D, Stewart DA, Erman MK, Gordon N, Philis-Tsimikas A, Casal E: Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. *Endocr Pract* 13:355–362, 2007
- 138. Harada Y, Oga T, Chin K, Takegami M, Takahashi K, Sumi K, Nakamura T, Nakayama-Ashida Y, Minami I, Horita S, Oka Y, Wakamura T, Fukuhara S, Mishima M, Kadotani H: Differences in relationships among sleep apnoea, glucose level, sleep duration and sleepiness between persons with and without type 2 diabetes. J Sleep Res 21:410–418, 2012
- 139. Pillai A, Warren G, Gunathilake W, Idris I: Effects of sleep apnea severity on glycemic control in patients with type 2 diabetes prior to continuous positive airway pressure treatment. *Diabetes Technol Ther* 13:945–949, 2011

- 140. Heffner JE, Rozenfeld Y, Kai M, Stephens EA, Brown LK: Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. *Chest* 141:1414– 1421, 2012
- 141. St-Onge MP, Zammit G, Reboussin DM, Kuna ST, Sanders MH, Millman R, Newman AB, Wadden TA, Wing RR, Pi-Sunyer FX, Foster GD; Sleep AHEAD Research Group: Associations of sleep disturbance and duration with metabolic risk factors in obese persons with type 2 diabetes: data from the Sleep AHEAD Study. Nat Sci Sleep 4:143–150, 2012
- 142. Kosseifi S, Bailey B, Price R, Roy TM, Byrd RP, Jr., Peiris AN: The association between obstructive sleep apnea syndrome and microvascular complications in well-controlled diabetic patients. *Mil Med* 175:913–916, 2010
- 143. Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Mughal S, Jose B, Piya MK, Barnett AH, Stevens MJ: Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. *Am J Respir Crit Care Med* 186:434–441, 2012
- 144. Rudrappa S, Warren G, Idris I: Obstructive sleep apnoea is associated with the development and progression of diabetic retinopathy, independent of conventional risk factors and novel biomarkers for diabetic retinopathy. Br J Ophthalmol 96:1535, 2012
- 145. Fenik VB, Davies RO, Kubin L: REM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs. *Am J Respir Crit Care Med* 172:1322–1330, 2005
- 146. Mokhlesi B, Punjabi NM: "REM-related" obstructive sleep apnea: an epiphenomenon or a clinically important entity? *Sleep* 35:5–7, 2012
- 147. Findley LJ, Wilhoit SC, Suratt PM: Apnea duration and hypoxemia during REM sleep in patients with obstructive sleep apnea. *Chest* 87:432–436, 1985
- 148. Grimaldi D, Beccuti G, Touma C, Van Cauter E, Mokhlesi B: Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: therapeutic implications. *Diabetes Care* 37:355–363, 2014
- 149. Reichmuth KJ, Austin D, Skatrud JB, Young T: Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med 172:1590– 1595, 2005
- Punjabi NM; Workshop Participants: Do sleep disorders and associated treatments impact glucose metabolism? *Drugs* 69(Suppl 2):13–27, 2009

- 151. Chakhtoura M, Azar ST: Continuous positive airway pressure and type 2 diabetes mellitus. *Diabetes Metab Syndr* 6:176–179, 2012
- 152. Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS, Wiest GH, Hahn EG, Lohmann T, Konturek PC, Ficker JH: Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. *Am J Respir Crit Care Med* 169:156–162, 2004
- Coughlin SR, Mawdsley L, Mugarza JA, Wilding JP, Calverley PM: Cardiovascular and metabolic effects of CPAP in obese males with OSA. *Eur Respir J* 29:720–727, 2007
- 154. West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR: Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. *Thorax* 62:969–974, 2007
- 155. Nguyen PK, Katikireddy CK, McConnell MV, Kushida C, Yang PC: Nasal continuous positive airway pressure improves myocardial perfusion reserve and endothelial-dependent vasodilation in patients with obstructive sleep apnea. *J Cardiovasc Magn Reson* 12:50, 2010
- 156. Kohler M, Stoewhas AC, Ayers L, Senn O, Bloch KE, Russi EW, Stradling JR: Effects of continuous positive airway pressure therapy withdrawal in patients with obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med 184:1192–1199, 2011
- 157. Sivam S, Phillips CL, Trenell MI, Yee BJ, Liu PY, Wong KK, Grunstein RR: Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. *Eur Respir J* 40:913–918, 2012
- 158. Hoyos CM, Killick R, Yee BJ, Phillips CL, Grunstein RR, Liu PY: Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. *Thorax* 67:1081–1089, 2012
- 159. Lam JC, Lam B, Yao TJ, Lai AY, Ooi CG, Tam S, Lam KS, Ip MS: A randomised controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. *Eur Respir J* 35:138–145, 2010
- 160. Weinstock TG, Wang X, Rueschman M, Ismail-Beigi F, Aylor J, Babineau DC, Mehra R, Redline S: A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep 35:617–625B, 2012
- 161. Shaw JE, Punjabi NM, Naughton MT, Willes L, Bergenstal RM, Cistulli PA, Fulcher GR, Richards GN, Zimmet PZ:

The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. *Am J Respir Crit Care Med* 194:486–492, 2016

- 162. Iftikhar IH, Blankfield RP: Effect of continuous positive airway pressure on hemoglobin A(1c) in patients with obstructive sleep apnea: a systematic review and meta-analysis. *Lung* 190:605–611, 2012
- 163. Yang D, Liu Z, Yang H, Luo Q: Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis. *Sleep Breath* 17:33–38, 2013
- 164. Hecht L, Mohler R, Meyer G: Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. *Ger Med Sci* 9:Doc20, 2011
- 165. Chen L, Pei JH, Chen HM: Effects of continuous positive airway pressure treatment on glycaemic control and insulin sensitivity in patients with obstructive sleep apnoea and type 2 diabetes: a meta-analysis. Arch Med Sci 10:637–642, 2014
- 166. Iftikhar IH, Khan MF, Das A, Magalang UJ: Meta-analysis: continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann Am Thorac Soc 10:115– 120, 2013
- 167. Pamidi S, Wroblewski K, Stepien M, Sharif-Sidi K, Kilkus J, Whitmore H, Tasali E: Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. A randomized controlled trial. Am J Respir Crit Care Med 192:96–105, 2015
- 168. Moon K, Punjabi NM, Aurora RN: Obstructive sleep apnea and type 2 diabetes in older adults. *Clin Geriatr Med* 31:139–147, ix, 2015
- 169. Narkiewicz K, Somers VK: Sympathetic nerve activity in obstructive sleep apnoea. *Acta Physiol Scand* 177:385–390, 2003
- 170. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK: Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. *Circulation* 97:943–945, 1998
- 171. Narkiewicz K, van de Borne PJ, Pesek CA, Dyken ME, Montano N, Somers VK: Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. *Circulation* 99:1183–1189, 1999
- 172. Loredo JS, Ziegler MG, Ancoli-Israel S, Clausen JL, Dimsdale JE: Relationship of arousals from sleep to sympathetic

nervous system activity and BP in obstructive sleep apnea. *Chest* 116:655– 659, 1999

- 173. Horner RL, Brooks D, Kozar LF, Tse S, Phillipson EA: Immediate effects of arousal from sleep on cardiac autonomic outflow in the absence of breathing in dogs. J Appl Physiol 79:151–162, 1995
- Nonogaki K: New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43:533–549, 2000
- 175. Deibert DC, DeFronzo RA: Epinephrineinduced insulin resistance in man. *J Clin Invest* 65:717–721, 1980
- 176. Avogaro A, Toffolo G, Valerio A, Cobelli C: Epinephrine exerts opposite effects on peripheral glucose disposal and glucose-stimulated insulin secretion. A stable label intravenous glucose tolerance test minimal model study. *Diabetes* 45:1373–1378, 1996
- Raz I, Katz A, Spencer MK: Epinephrine inhibits insulin-mediated glycogenesis but enhances glycolysis in human skeletal muscle. Am J Physiol 260:E430–E435, 1991
- 178. Lafontan M, Berlan M: Fat cell alpha 2-adrenoceptors: the regulation of fat cell function and lipolysis. *Endocr Rev* 16:716–738, 1995
- 179. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI: Mechanism of free fatty acid-induced insulin resistance in humans. *J Clin Invest* 97:2859–2865, 1996
- 180. Santomauro AT, Boden G, Silva ME, Rocha DM, Santos RF, Ursich MJ, Strassmann PG, Wajchenberg BL: Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. *Diabetes* 48:1836–1841, 1999
- Julius S, Gudbrandsson T, Jamerson K, Andersson O: The interconnection between sympathetics, microcirculation, and insulin resistance in hypertension. *Blood Press* 1:9–19, 1992
- 182. Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO: Reflex sympathetic activation induces acute insulin resistance in the human forearm. *Hypertension* 21:618–623, 1993
- 183. Zeman RJ, Ludemann R, Easton TG, Etlinger JD: Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2-receptor agonist. *Am J Physiol* 254:E726–E732, 1988
- 184. Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR: Beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem 274:34795–34802, 1999

- 185. Moncloa F, Velasco I, Beteta L: Plasma cortisol concentration and disappearance rate of 4-14C-cortisol in newcomers to high altitude. J Clin Endocrinol Metab 28:379–382, 1968
- 186. Humpeler E, Skrabal F, Bartsch G: Influence of exposure to moderate altitude on the plasma concentraton of cortisol, aldosterone, renin, testosterone, and gonadotropins. *Eur J Appl Physiol Occup Physiol* 45:167–176, 1980
- 187. Maresh CM, Noble BJ, Robertson KL, Harvey JS, Jr.: Aldosterone, cortisol, and electrolyte responses to hypobaric hypoxia in moderate-altitude natives. Aviat Space Environ Med 56:1078–1084, 1985
- 188. Anand IS, Chandrashekhar Y, Rao SK, Malhotra RM, Ferrari R, Chandana J, Ramesh B, Shetty KJ, Boparai MS: Body fluid compartments, renal blood flow, and hormones at 6,000 m in normal subjects. J Appl Physiol 74:1234–1239, 1993
- 189. Obminski Z, Golec L, Stupnicki R, Hackney AC: Effects of hypobaric-hypoxia on the salivary cortisol levels of aircraft pilots. Aviat Space Environ Med 68:183– 186, 1997
- 190. Barnholt KE, Hoffman AR, Rock PB, Muza SR, Fulco CS, Braun B, Holloway L, Mazzeo RS, Cymerman A, Friedlander AL: Endocrine responses to acute and chronic high-altitude exposure (4,300 meters): modulating effects of caloric restriction. Am J Physiol Endocrinol Metab 290:E1078–E1088, 2006
- 191. Coste O, Beers PV, Bogdan A, Charbuy H, Touitou Y: Hypoxic alterations of cortisol circadian rhythm in man after simulation of a long duration flight. *Steroids* 70:803– 810, 2005
- 192. Follenius M, Brandenberger G, Bandesapt JJ, Libert JP, Ehrhart J: Nocturnal cortisol release in relation to sleep structure. *Sleep* 15:21–27, 1992
- 193. Spath-Schwalbe E, Gofferje M, Kern W, Born J, Fehm HL: Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. *Biol Psychiatry* 29:575–584, 1991
- 194. Dinneen S, Alzaid A, Miles J, Rizza R: Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. *J Clin Invest* 92:2283– 2290, 1993
- Andrews RC, Walker BR: Glucocorticoids and insulin resistance: old hormones, new targets. *Clin Sci (Lond)* 96:513–523, 1999
- 196. Tasali E, Chapotot F, Leproult R, Whitmore H, Ehrmann DA: Treatment of obstructive sleep apnea improves cardiometabolic function in young obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 96:365–374, 2011

- 197. Lavie L, Lavie P: Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. *Eur Respir J* 33:1467–1484, 2009
- 198. Lavie L: Oxidative stress—a unifying paradigm in obstructive sleep apnea and comorbidities. *Prog Cardiovasc Dis* 51:303–312, 2009
- 199. Barcelo A, Miralles C, Barbe F, Vila M, Pons S, Agusti AG: Abnormal lipid peroxidation in patients with sleep apnoea. *Eur Respir J* 16:644–647, 2000
- 200. Christou K, Markoulis N, Moulas AN, Pastaka C, Gourgoulianis KI: Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. *Sleep Breath* 7:105–110, 2003
- 201. Lavie L, Vishnevsky A, Lavie P: Evidence for lipid peroxidation in obstructive sleep apnea. *Sleep* 27:123–128, 2004
- 202. Yamauchi M, Nakano H, Maekawa J, Okamoto Y, Ohnishi Y, Suzuki T, Kimura H: Oxidative stress in obstructive sleep apnea. *Chest* 127:1674–1679, 2005
- 203. Tan KC, Chow WS, Lam JC, Lam B, Wong WK, Tam S, Ip MS: HDL dysfunction in obstructive sleep apnea. *Atherosclerosis* 184:377–382, 2006
- 204. Christou K, Moulas AN, Pastaka C, Gourgoulianis KI: Antioxidant capacity in obstructive sleep apnea patients. *Sleep Med* 4:225–228, 2003
- 205. Jung HH, Han H, Lee JH: Sleep apnea, coronary artery disease, and antioxidant status in hemodialysis patients. *Am J Kidney Dis* 45:875–882, 2005
- 206. Dyugovskaya L, Lavie P, Lavie L: Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. *Am J Respir Crit Care Med* 165:934–939, 2002
- 207. Schulz R, Mahmoudi S, Hattar K, Sibelius U, Olschewski H, Mayer K, Seeger W, Grimminger F: Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162:566–570, 2000
- 208. Saarelainen S, Lehtimaki T, Jaak-kola O, Poussa T, Nikkila M, Solakivi T, Nieminen MM: Autoantibodies against oxidised low-density lipoprotein in patients with obstructive sleep apnoea. *Clin Chem Lab Med* 37:517–520, 1999
- 209. Tiedge M, Lortz S, Drinkgern J, Lenzen S: Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. *Diabetes* 46:1733–1742, 1997
- 210. Paolisso G, D'Amore A, Di Maro G, Galzerano D, Tesauro P, Varricchio M, D'Onofrio F: Evidence for a relationship

between free radicals and insulin action in the elderly. *Metabolism* 42:659–663, 1993

- Paolisso G, D'Amore A, Volpe C, Balbi V, Saccomanno F, Galzerano D, Giugliano D, Varricchio M, D'Onofrio F: Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (type II) diabetic patients. *Metabolism* 43:1426–1429, 1994
- 212. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N: Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. *Diabetes* 47:1562–1569, 1998
- 213. Paolisso G, Di Maro G, Pizza G, D'Amore A, Sgambato S, Tesauro P, Varricchio M, D'Onofrio F: Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. *Am J Physiol* 263:E435–E440, 1992
- 214. Caballero B: Vitamin E improves the action of insulin. *Nutr Rev* 51:339–340, 1993
- 215. Paolisso G, D'Amore A, Balbi V, Volpe C, Galzerano D, Giugliano D, Sgambato S, Varricchio M, D'Onofrio F: Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics. Am J Physiol 266:E261–E268, 1994
- 216. Jacob S, Ruus P, Hermann R, Tritschler HJ, Maerker E, Renn W, Augustin HJ, Dietze GJ, Rett K: Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. *Free Radic Biol Med* 27:309– 314, 1999
- 217. Ohga E, Nagase T, Tomita T, Teramoto S, Matsuse T, Katayama H, Ouchi Y: Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome. *J Appl Physiol* 87:10–14, 1999
- 218. Chin K, Nakamura T, Shimizu K, Mishima M, Nakamura T, Miyasaka M, Ohi M: Effects of nasal continuous positive airway pressure on soluble cell adhesion molecules in patients with obstructive sleep apnea syndrome. *Am J Med* 109:562–567, 2000
- 219. El-Solh AA, Mador MJ, Sikka P, Dhillon RS, Amsterdam D, Grant BJ: Adhesion molecules in patients with coronary artery disease and moderate-to-severe obstructive sleep apnea. *Chest* 121:1541–1547, 2002
- 220. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y: Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. *J Appl Physiol* 94:179–184, 2003

- 221. O'Brien LM, Serpero LD, Tauman R, Gozal D: Plasma adhesion molecules in children with sleep-disordered breathing. *Chest* 129:947–953, 2006
- 222. Ursavas A, Karadag M, Rodoplu E, Yilmaztepe A, Oral HB, Gozu RO: Circulating ICAM-1 and VCAM-1 levels in patients with obstructive sleep apnea syndrome. *Respiration* 74:525–532, 2007
- 223. Alberti A, Sarchielli P, Gallinella E, Floridi A, Floridi A, Mazzotta G, Gallai V: Plasma cytokine levels in patients with obstructive sleep apnea syndrome: a preliminary study. J Sleep Res 12:305–311, 2003
- 224. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T, Adachi M: Elevated levels of c-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. *Circulation* 107:1129–1134, 2003
- 225. Minoguchi K, Tazaki T, Yokoe T, Minoguchi H, Watanabe Y, Yamamoto M, Adachi M: Elevated production of tumor necrosis factor-alpha by monocytes in patients with obstructive sleep apnea syndrome. *Chest* 126:1473–1479, 2004
- 226. Ryan S, Taylor CT, McNicholas WT: Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. *Circulation* 112:2660–2667, 2005
- 227. Dyugovskaya L, Lavie P, Hirsh M, Lavie L: Activated CD8+ T-lymphocytes in obstructive sleep apnoea. *Eur Respir J* 25:820–828, 2005
- 228. Dyugovskaya L, Lavie P, Lavie L: Phenotypic and functional characterization of blood gammadelta T cells in sleep apnea. *Am J Respir Crit Care Med* 168:242–249, 2003
- 229. Dyugovskaya L, Lavie P, Lavie L: Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea. *Ann N Y Acad Sci* 1051:340–350, 2005
- 230. Klokker M, Kharazmi A, Galbo H, Bygbjerg I, Pedersen BK: Influence of in vivo hypobaric hypoxia on function of lymphocytes, neutrocytes, natural killer cells, and cytokines. J Appl Physiol 74:1100–1106, 1993
- 231. Facco M, Zilli C, Siviero M, Ermolao A, Travain G, Baesso I, Bonamico S, Cabrelle A, Zaccaria M, Agostini C: Modulation of immune response by the acute and chronic exposure to high altitude. *Med Sci Sports Exerc* 37:768–774, 2005
- 232. Zhang Y, Hu Y, Wang F: Effects of a 28-day "living high—training low" on T-lymphocyte subsets in soccer players. Int J Sports Med 28:354–358, 2007
- 233. Madden KS, Sanders VM, Felten DL: Catecholamine influences and

sympathetic neural modulation of immune responsiveness. *Annu Rev Pharmacol Toxicol* 35:417–448, 1995

- 234. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES: The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. *Pharmacol Rev* 52:595–638, 2000
- 235. Punjabi NM, Beamer BA: C-reactive protein is associated with sleep disordered breathing independent of adiposity. *Sleep* 30:29–34, 2007
- 236. Ahima RS, Flier JS: Leptin. Annu Rev Physiol 62:413–437, 2000
- 237. Ceddia RB, Koistinen HA, Zierath JR, Sweeney G: Analysis of paradoxical observations on the association between leptin and insulin resistance. *FASEB J* 16:1163–1176, 2002
- 238. Margetic S, Gazzola C, Pegg GG, Hill RA: Leptin: a review of its peripheral actions and interactions. *Int J Obes Relat Metab Disord* 26:1407–1433, 2002
- 239. Ozturk L, Unal M, Tamer L, Celikoglu F: The association of the severity of obstructive sleep apnea with plasma leptin levels. Arch Otolaryngol Head Neck Surg 129:538–540, 2003
- 240. Patel SR, Palmer LJ, Larkin EK, Jenny NS, White DP, Redline S: Relationship between obstructive sleep apnea and diurnal leptin rhythms. *Sleep* 27:235–239, 2004
- 241. Shimura R, Tatsumi K, Nakamura A, Kasahara Y, Tanabe N, Takiguchi Y, Kuriyama T: Fat accumulation, leptin, and hypercapnia in obstructive sleep apnea-hypopnea syndrome. *Chest* 127:543–549, 2005
- 242. Tatsumi K, Kasahara Y, Kurosu K, Tanabe N, Takiguchi Y, Kuriyama T: Sleep oxygen desaturation and circulating leptin in obstructive sleep apnea-hypopnea syndrome. *Chest* 127:716–721, 2005
- 243. Ulukavak Ciftci T, Kokturk O, Bukan N, Bilgihan A: Leptin and ghrelin levels in patients with obstructive sleep apnea syndrome. *Respiration* 72:395–401, 2005
- 244. McArdle N, Hillman D, Beilin L, Watts G: Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. *Am J Respir Crit Care Med* 175:190–195, 2007
- 245. Sharma SK, Kumpawat S, Goel A, Banga A, Ramakrishnan L, Chaturvedi P: Obesity, and not obstructive sleep apnea, is responsible for metabolic abnormalities in a cohort with sleep-disordered breathing. *Sleep Med* 8:12–17, 2007
- 246. Saarelainen S, Lahtela J, Kallonen E: Effect of nasal CPAP treatment on insulin sensitivity and plasma leptin. *J Sleep Res* 6:146–147, 1997

- 247. Chin K, Shimizu K, Nakamura T, Narai N, Masuzaki H, Ogawa Y, Mishima M, Nakamura T, Nakao K, Ohi M: Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. *Circulation* 100:706–712, 1999
- 248. Harsch IA, Konturek PC, Koebnick C, Kuehnlein PP, Fuchs FS, Pour Schahin S, Wiest GH, Hahn EG, Lohmann T, Ficker JH: Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment. *Eur Respir J* 22:251–257, 2003
- 249. Sanner BM, Kollhosser P, Buechner N, Zidek W, Tepel M: Influence of treatment on leptin levels in patients with obstructive sleep apnoea. *Eur Respir J* 23:601–604, 2004
- 250. Tschop M, Strasburger CJ, Topfer M, Hautmann H, Riepl R, Fischer R, Hartmann G, Morrison K, Appenzeller M, Hildebrandt W, Biollaz J, Bartsch P: Influence of hypobaric hypoxia on leptin levels in men. Int J Obes Relat Metab Disord 24(Suppl 2):S151, 2000
- 251. Harsch IA, Wallaschofski H, Koebnick C, Pour Schahin S, Hahn EG, Ficker JH, Lohmann T: Adiponectin in patients with obstructive sleep apnea syndrome: course and physiological relevance. *Respiration* 71:580–586, 2004
- 252. Wolk R, Svatikova A, Nelson CA, Gami AS, Govender K, Winnicki M, Somers VK: Plasma levels of adiponectin, a novel adipocyte-derived hormone, in sleep apnea. *Obes Res* 13:186–190, 2005
- 253. Zhang XL, Yin KS, Mao H, Wang H, Yang Y: Serum adiponectin level in patients with obstructive sleep apnea hypopnea syndrome. *Chin Med J (Engl)* 117:1603– 1606, 2004
- 254. Masserini B, Morpurgo PS, Donadio F, Baldessari C, Bossi R, Beck-Peccoz P, Orsi E: Reduced levels of adiponectin in sleep apnea syndrome. *J Endocrinol Invest* 29:700–705, 2006
- 255. Zhang XL, Yin KS, Wang H, Su S: Serum adiponectin levels in adult male patients with obstructive sleep apnea hypopnea syndrome. *Respiration* 73:73–77, 2006
- 256. Zhang XL, Yin KS, Li C, Jia EZ, Li YQ, Gao ZF: Effect of continuous positive airway pressure treatment on serum adiponectin level and mean arterial pressure in male patients with obstructive sleep apnea syndrome. *Chin Med J (Engl)* 120:1477– 1481, 2007
- 257. Nakagawa Y, Kishida K, Kihara S, Sonoda M, Hirata A, Yasui A, Nishizawa H, Nakamura T, Yoshida R, Shimomura I, Funahashi T: Nocturnal reduction in

circulating adiponectin concentrations related to hypoxic stress in severe obstructive sleep apnea-hypopnea syndrome. *Am J Physiol Endocrinol Metab* 294:E778–E784, 2008

- 258. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA: The hormone resistin links obesity to diabetes. *Nature* 409:307–312, 2001
- 259. Asano T, Sakosda H, Fujishiro M, Anai M, Kushiyama A, Horike N, Kamata H, Ogihara T, Kurihara H, Uchijima Y: Physiological significance of resistin and resistin-like molecules in the inflammatory process and insulin resistance. *Curr Diabetes Rev* 2:449–454, 2006
- 260. Harsch IA, Koebnick C, Wallaschofski H, Schahin SP, Hahn EG, Ficker JH, Lohmann T, Konturek PC: Resistin levels in patients with obstructive sleep apnoea syndrome—the link to subclinical inflammation? *Med Sci Monit* 10:CR510–CR515, 2004
- Tauman R, Serpero LD, Capdevila OS, O'Brien LM, Goldbart AD, Kheirandish-Gozal L, Gozal D: Adipokines in children with sleep disordered breathing. *Sleep* 30:443–449, 2007
- 262. Lecube A, Sampol G, Lloberes P, Romero O, Mesa J, Hernandez C, Simo R: Diabetes is an independent risk factor for severe nocturnal hypoxemia in obese patients. A case-control study. *PLOS ONE* 4:e4692, 2009
- Bottini P, Redolfi S, Dottorini ML, Tantucci C: Autonomic neuropathy increases the risk of obstructive sleep apnea in obese diabetics. *Respiration* 75:265–271, 2008
- 264. Keller T, Hader C, De Zeeuw J, Rasche K: Obstructive sleep apnea syndrome: the effect of diabetes and autonomic neuropathy. *J Physiol Pharmacol* 58(Suppl 5):313–318, 2007
- 265. Neumann C, Martinez D, Schmid H: Nocturnal oxygen desaturation in diabetic patients with severe autonomic neuropathy. *Diabetes Res Clin Pract* 28:97–102, 1995
- 266. Rees PJ, Prior JG, Cochrane GM, Clark TJ: Sleep apnoea in diabetic patients with autonomic neuropathy. *J R Soc Med* 74:192–195, 1981
- Hein MS, Schlenker EH, Patel KP: Altered control of ventilation in streptozotocin-induced diabetic rats. *Proc Soc Exp Biol Med* 207:213–219, 1994
- 268. Tantucci C, Scionti L, Bottini P, Dottorini ML, Puxeddu E, Casucci G, Sorbini CA: Influence of autonomic neuropathy of different severities on the hypercapnic drive to breathing in diabetic patients. *Chest* 112:145–153, 1997

- 269. Kashine S, Kishida K, Funahashi T, Nakagawa Y, Otuki M, Okita K, Iwahashi H, Kihara S, Nakamura T, Matsuzawa Y, Shimomura I: Characteristics of sleep-disordered breathing in Japanese patients with type 2 diabetes mellitus. *Metabolism* 59:690–696, 2010
- 270. Noradina AT, Hamidon BB, Roslan H, Raymond AA: Risk factors for developing sleep-disordered breathing in patients with recent ischaemic stroke. *Singapore Med J* 47:392–399, 2006
- 271. Tada T, Kusano KF, Ogawa A, Iwasaki J, Sakuragi S, Kusano I, Takatsu S, Miyazaki M, Ohe T: The predictors of central and obstructive sleep apnoea in haemodialysis patients. *Nephrol Dial Transplant* 22:1190–1197, 2007
- 272. Pien GW, Schwab RJ: Sleep disorders during pregnancy. *Sleep* 27:1405–1417, 2004
- 273. Hedman C, Pohjasvaara T, Tolonen U, Suhonen-Malm AS, Myllyla VV: Effects of pregnancy on mothers' sleep. *Sleep Med* 3:37–42, 2002
- 274. Lee KA, Zaffke ME, McEnany G: Parity and sleep patterns during and after pregnancy. *Obstet Gynecol* 95:14–18, 2000
- 275. Driver HS, Shapiro CM: A longitudinal study of sleep stages in young women during pregnancy and postpartum. *Sleep* 15:449–453, 1992
- 276. Hertz G, Fast A, Feinsilver SH, Albertario CL, Schulman H, Fein AM: Sleep in normal late pregnancy. *Sleep* 15:246–251, 1992
- 277. Mindell JA, Jacobson BJ: Sleep disturbances during pregnancy. J Obstet Gynecol Neonatal Nurs 29:590–597, 2000
- 278. O'Brien LM, Bullough AS, Owusu JT, Tremblay KA, Brincat CA, Chames MC, Kalbfleisch JD, Chervin RD: Pregnancyonset habitual snoring, gestational hypertension, and preeclampsia: prospective cohort study. Am J Obstet Gynecol 207:487.e1–487.e9, 2012
- 279. Bourjeily G, Raker CA, Chalhoub M, Miller MA: Pregnancy and fetal outcomes of symptoms of sleep-disordered breathing. *Eur Respir J* 36:849–855, 2010
- 280. Maasilta P, Bachour A, Teramo K, Polo O, Laitinen LA: Sleep-related disordered breathing during pregnancy in obese women. *Chest* 120:1448–1454, 2001
- 281. Qiu C, Enquobahrie D, Frederick IO, Abetew D, Williams MA: Glucose intolerance and gestational diabetes risk in relation to sleep duration and snoring during pregnancy: a pilot study. *BMC Womens Health* 10:17, 2010
- 282. Facco FL, Grobman WA, Kramer J, Ho KH, Zee PC: Self-reported short sleep duration

and frequent snoring in pregnancy: impact on glucose metabolism. *Am J Obstet Gynecol* 203:142.e1–142.e5, 2010

- 283. Ugur MG, Boynukalin K, Atak Z, Ustuner I, Atakan R, Baykal C: Sleep disturbances in pregnant patients and the relation to obstetric outcome. *Clin Exp Obstet Gynecol* 39:214–217, 2012
- 284. Reutrakul S, Zaidi N, Wroblewski K, Kay HH, Ismail M, Ehrmann DA, Van Cauter E: Sleep disturbances and their relationship to glucose tolerance in pregnancy. *Diabetes Care* 34:2454–2457, 2011
- 285. Bourjeily G, El Sabbagh R, Sawan P, Raker C, Wang C, Hott B, Louis M: Epworth sleepiness scale scores and adverse pregnancy outcomes. *Sleep Breath* 17:1179–1186, 2013
- 286. O'Brien LM, Bullough AS, Chames MC: Sleep duration and glucose levels in pregnant women (Abstract). *Sleep* 36(Suppl):A400, 2013
- 287. Facco FL, Liu CS, Cabello AA, Kick A, Gribman WA, Zee PC: Sleep-disordered breathing: a risk factor for adverse pregnancy outcomes? *Am J Perinatol* 29:277–282, 2012
- 288. Chen YH, Kang JH, Lin CC, Wang IT, Keller JJ, Lin HC: Obstructive sleep apnea and the risk of adverse pregnancy outcomes. *Am J Obstet Gynecol* 206:136.e1–136.e5, 2012
- 289. Izci Balserak B, Jackson N, Ratcliffe SA, Pack AI, Pien GW: Sleep-disordered breathing and daytime napping are associated with maternal hyperglycemia. *Sleep Breath* 17:1093–1102. 2013
- 290. Herring SJ, Nelson DB, Pien GW, Homko CJ, Goetzl L, Davey A, Foster GD: Objectively-measured sleep duration and hyperglycemia in pregnancy. *Sleep Med* 15:51–55, 2014
- 291. Facco FL, Ouyang D, Grobman W, Strohl A, Gonzalez A, Espinoza A, Verzillo V, Zee P: Sleep apnea is associated with an increased risk of gestational diabetes (Abstract). *Sleep* 36(Suppl):A123, 2013
- 292. Reutrakul S, Zaidi N, Wroblewski K, Kay HH, Ismail M, Ehrmann DA, Van Cauter E: Interactions between pregnancy, obstructive sleep apnea, and gestational diabetes mellitus. J Clin Endocrinol Metab 98:4195–4202, 2013
- 293. Bisson M, Series F, Giguere Y, Pamidi S, Kimoff J, Weisnagel SJ, Marc I: Gestational diabetes mellitus and sleep-disordered breathing. *Obstet Gynecol* 123:634–641, 2014
- 294. Luque-Fernandez MA, Bain PA, Gelaye B, Redline S, Williams MA: Sleep-disordered breathing and gestational diabetes mellitus: a meta-analysis of 9,795 participants enrolled in epidemiological

observational studies. *Diabetes Care* 36:3353–3360, 2013

- 295. Louis JM, Auckley D, Sokol RJ, Mercer BM: Maternal and neonatal morbidities associated with obstructive sleep apnea complicating pregnancy. *Am J Obstet Gynecol* 202:261.e1–261.e5, 2010
- 296. Champagne K, Schwartzman K, Opatrny L, Barriga P, Morin L, Mallozzi A, Benjamin A, Kimoff RJ: Obstructive sleep apnoea and its association with gestational hypertension. *Eur Respir J* 33:559–565, 2009
- 297. August EM, Salihu HM, Biroscak BJ, Rahman S, Bruder K, Whiteman VE: Systematic review on sleep disorders and obstetric outcomes: scope of current knowledge. *Am J Perinatol* 30:323–334, 2013
- 298. Pamidi S, Pinto LM, Marc I, Benedetti A, Schwartzman K, Kimoff RJ: Maternal sleep-disordered breathing and adverse pregnancy outcomes: a systematic review and metaanalysis. *Am J Obstet Gynecol* 210:52.e1–52.e14, 2014
- 299. O'Keeffe M, St-Onge MP: Sleep duration and disorders in pregnancy: implications for glucose metabolism and pregnancy outcomes. *Int J Obes (Lond)* 37:765–770, 2013
- 300. Guilleminault C, Kreutzer M, Chang JL: Pregnancy, sleep disordered breathing and treatment with nasal continuous positive airway pressure. *Sleep Med* 5:43–51, 2004
- 301. Huang W, Ramsey KM, Marcheva B, Bass J: Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141, 2011
- 302. Morris CJ, Yang JN, Scheer FA: The impact of the circadian timing system on cardiovascular and metabolic function. *Prog Brain Res* 199:337–358, 2012
- 303. Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J: Circadian clocks and metabolism. *Handb Exp Pharmacol* 217:127–155, 2013
- 304. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J: Obesity and metabolic syndrome in circadian Clock mutant mice. *Science* 308:1043– 1045, 2005
- 305. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ: Light at night increases body mass by shifting the time of food intake. *Proc Natl Acad Sci U S A* 107:18664–18669, 2010
- 306. Bureau of Labor Statistics: Workers on Flexible and Shift Schedules in May 2004. Washington, DC: U.S. Department of Labor, Bureau of Labor Statistics, 2005

- 307. Oyama I, Kubo T, Fujino Y, Kadowaki K, Kunimoto M, Shirane K, Tabata H, Sabanai K, Nakamura T, Matsuda S: Retrospective cohort study of the risk of impaired glucose tolerance among shift workers. Scand J Work Environ Health 38:337–342, 2012
- 308. Suwazono Y, Uetani M, Oishi M, Tanaka K, Morimoto H, Sakata K: Calculation of the benchmark duration of shift work associated with the development of impaired glucose metabolism: a 14-year cohort study on 7104 male workers. Occup Environ Med 67:532–537, 2010
- 309. Eriksson AK, van den Donk M, Hilding A, Ostenson CG: Work stress, sense of coherence, and risk of type 2 diabetes in a prospective study of middle-aged Swedish men and women. *Diabetes Care* 36:2683–2689, 2013
- 310. Guo Y, Liu Y, Huang X, Rong Y, He M, Wang Y, Yuan J, Wu T, Chen W: The effects of shift work on sleeping quality, hypertension and diabetes in retired workers. *PLOS ONE* 8:e71107, 2013
- 311. Monk TH, Buysse DJ: Exposure to shift work as a risk factor for diabetes. *J Biol Rhythms* 28:356–359, 2013
- 312. Morikawa Y, Nakagawa H, Miura K, Soyama Y, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Nogawa K: Shift work and the risk of diabetes mellitus among Japanese male factory workers. *Scand J Work Environ Health* 31:179–183, 2005
- 313. Oberlinner C, Ott MG, Nasterlack M, Yong M, Messerer P, Zober A, Lang S: Medical program for shift workers—impacts on chronic disease and mortality outcomes. *Scand J Work Environ Health* 35:309– 318, 2009
- 314. Pan A, Schernhammer ES, Sun Q, Hu FB: Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. *PLOS Med* 8:e1001141, 2011
- 315. Suwazono Y, Sakata K, Okubo Y, Harada H, Oishi M, Kobayashi E, Uetani M, Kido T, Nogawa K: Long-term longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers. *J Occup Environ Med* 48:455– 461, 2006
- 316. Teratani T, Morimoto H, Sakata K, Oishi M, Tanaka K, Nakada S, Nogawa K, Suwazono Y: Dose-response relationship between tobacco or alcohol consumption and the development of diabetes mellitus in Japanese male workers. *Drug Alcohol Depend* 125:276–282, 2012
- 317. Poulsen K, Cleal B, Clausen T, Andersen LL: Work, diabetes and obesity: a seven year follow-up study among Danish health care workers. *PLOS ONE* 9:e103425, 2014

- 318. Vimalananda VG, Palmer JR, Gerlovin H, Wise LA, Rosenzweig JL, Rosenberg L, Ruiz Narvaez EA: Night-shift work and incident diabetes among African-American women. *Diabetologia* 58:699–706, 2015
- 319. Morikawa Y, Miura K, Sasaki S, Yoshita K, Yoneyama S, Sakurai M, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Higashiyama M, Nakagawa H: Evaluation of the effects of shift work on nutrient intake: a cross-sectional study. *J Occup Health* 50:270–278, 2008
- 320. Lennernas M, Hambraeus L, Akerstedt T: Shift related dietary intake in day and shift workers. *Appetite* 25:253–265, 1995
- 321. de Assis MA, Nahas MV, Bellisle F, Kupek E: Meals, snacks and food choices in Brazilian shift workers with high energy expenditure. J Hum Nutr Diet 16:283– 289, 2003
- 322. Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, Li L, Cao S, Dong X, Gong Y, Shi O, Deng J, Bi H, Lu Z: Shift work and diabetes mellitus: a meta-analysis of observational studies. *Occup Environ Med* 72:72–78, 2015
- 323. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A: Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. *Sleep Med Rev* 30:11–24, 2015
- 324. Scheer FA, Hilton MF, Mantzoros CS, Shea SA: Adverse metabolic and cardiovascular consequences of circadian misalignment. *Proc Natl Acad Sci U S A* 106:4453–4458, 2009
- 325. Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF, Wang W, Czeisler CA, Shea SA: Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 4:129ra43, 2012
- 326. McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, Wright KP, Jr.: Impact of circadian misalignment on energy metabolism during simulated nightshift work. *Proc Natl Acad Sci U S A* 111:17302–17307, 2014
- 327. Morris CJ, Yang JN, Garcia JI, Myers S, Bozzi I, Wang W, Buxton OM, Shea SA, Scheer FA: Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. *Proc Natl Acad Sci U S* A 112:E2225–E2234, 2015
- 328. Poole CJ, Wright AD, Nattrass M: Control of diabetes mellitus in shift workers. *Br J Ind Med* 49:513–515, 1992

- 329. Chalernvanichakorn T, Sithisarankul P, Hiransuthikul N: Shift work and type 2 diabetic patients' health. *J Med Assoc Thai* 91:1093–1096, 2008
- 330. Young J, Waclawski E, Young JA, Spencer J: Control of type 1 diabetes mellitus and shift work. Occup Med (Lond) 63:70–72, 2013
- Zee PC, Attarian H, Videnovic A: Circadian rhythm abnormalities. *Continuum* (*Minneap Minn*) 19:132–147, 2013
- 332. Kantermann T, Duboutay F, Haubruge D, Hampton S, Darling AL, Berry JL, Kerkhofs M, Boudjeltia KZ, Skene DJ: The direction of shift-work rotation impacts metabolic risk independent of chronotype and social jetlag—an exploratory pilot study. *Chronobiol Int* 31:1139–1145, 2014
- 333. Wittmann M, Dinich J, Merrow M, Roenneberg T: Social jetlag: misalignment of biological and social time. *Chronobiol Int* 23:497–509, 2006
- 334. Horne JA, Ostberg O: A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110, 1976
- 335. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M: Epidemiology of the human circadian clock. *Sleep Med Rev* 11:429– 438, 2007
- 336. Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, Merrow M: A marker for the end of adolescence. *Curr Biol* 14:R1038–R1039, 2004
- 337. Merikanto I, Lahti T, Puolijoki H, Vanhala M, Peltonen M, Laatikainen T, Vartiainen E, Salomaa V, Kronholm E, Partonen T: Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. *Chronobiol Int* 30:470–477, 2013
- 338. Wong PM, Roecklein KA, Muldoon M, Manuck S: Later chronotype is associated with increased risk for the metabolic syndrome (Abstract). *Sleep* 36(Suppl):A285, 2013
- 339. Finn L, Young EJ, Mignot E, Young T, Peppard PE: Associations of eveningness chronotype with adverse metabolic indications in the Wisconsin Sleep Cohort (Abstract). Sleep 36(Suppl):A188, 2013
- 340. Garaulet M, Esteban Tardido A, Lee YC, Smith CE, Parnell LD, Ordovas JM: SIRT1 and CLOCK 3111T>C combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. *Int J Obes* (Lond) 36:1436–1441, 2012
- 341. Scott EM, Carter AM, Grant PJ: Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 32:658–662, 2008

- 342. Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, Gauguier D: Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. *Proc Natl Acad Sci U S A* 104:14412–14417, 2007
- 343. Lucassen EA, Zhao X, Rother KI, Mattingly MS, Courville AB, de Jonge L, Csako G, Cizza G; Sleep Extension Study Group: Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. *PLOS ONE* 8:e56519, 2013
- 344. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL, Van Cauter E: Chronotype is independently associated with glycemic control in type 2 diabetes. *Diabetes Care* 36:2523–2529, 2013
- 345. Iwasaki M, Hirose T, Mita T, Sato F, Ito C, Yamamoto R, Someya Y, Yoshihara T, Tamura Y, Kanazawa A, Kawamori R, Fujitani Y, Watada H: Morningnesseveningness questionnaire score correlates with glycated hemoglobin in middle-aged male workers with type 2 diabetes mellitus. J Diabetes Investig 4:376–381, 2013
- 346. Osonoi Y, Mita T, Osonoi T, Saito M, Tamasawa A, Nakayama S, Someya Y, Ishida H, Kanazawa A, Gosho M, Fujitani Y, Watada H: Morningness-eveningness questionnaire score and metabolic parameters in patients with type 2 diabetes mellitus. *Chronobiol Int* 31:1017–1023, 2014
- 347. Brzezinski A: Melatonin in humans. N Engl J Med 336:186–195, 1997
- 348. Waldhauser F, Dietzel M: Daily and annual rhythms in human melatonin secretion: role in puberty control. *Ann N Y Acad Sci* 453:205–214, 1985
- 349. Crowley SJ: Assessment of circadian rhythms. In The Oxford Handbook of Infant, Child, and Adolescent Sleep and Behavior. Wolfson AR, Montgomery-Downs HE, Eds. New York, NY, Oxford University Press, 2013, p. 204–222
- 350. Peschke E, Muhlbauer E: New evidence for a role of melatonin in glucose regulation. Best Pract Res Clin Endocrinol Metab 24:829–841, 2010
- 351. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT: Melatonin membrane receptors in peripheral tissues: distribution and functions. *Mol Cell Endocrinol* 351:152–166, 2012
- 352. McArthur AJ, Gillette MU, Prosser RA: Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. *Brain Res* 565:158–161, 1991

- 353. Ramracheya RD, Muller DS, Squires PE, Brereton H, Sugden D, Huang GC, Amiel SA, Jones PM, Persaud SJ: Function and expression of melatonin receptors on human pancreatic islets. J Pineal Res 44:273–279, 2008
- 354. Cizza G, Requena M, Galli G, de Jonge L: Chronic sleep deprivation and seasonality: implications for the obesity epidemic. *J Endocrinol Invest* 34:793–800, 2011
- 355. Sparso T, Bonnefond A, Andersson E, Bouatia-Naji N, Holmkvist J, Wegner L, Grarup N, Gjesing AP, Banasik K, Cavalcanti-Proenca C, Marchand M, Vaxillaire M, Charpentier G, Jarvelin MR, Tichet J, Balkau B, Marre M, Levy-Marchal C, Faerch K, Borch-Johnsen K, Jorgensen T, Madsbad S, Poulsen P, Vaag A, Dina C, Hansen T. Pedersen O, Froguel P: G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: studies involving 19,605 Europeans. Diabetes 58:1450-1456, 2009
- 356. Langenberg C, Pascoe L, Mari A, Tura A, Laakso M, Frayling TM, Barroso I, Loos RJ, Wareham NJ, Walker M; RISC Consortium: Common genetic variation in the melatonin receptor 1B gene (MTNR1B) is associated with decreased early-phase insulin response. *Diabetologia* 52:1537–1542, 2009
- 357. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, Loos RJ, Manning AK, Jackson AU, Aulchenko Y, Potter SC, Erdos MR, Sanna S, Hottenga JJ, Wheeler E, Kaakinen M, Lyssenko V, Chen WM, Ahmadi K, Beckmann JS, Bergman RN, Bochud M, Bonnycastle LL, Buchanan TA, Cao A, Cervino A, Coin L, Collins FS, Crisponi L, de Geus EJ, Dehghan A, Deloukas P, Doney AS, Elliott P, Freimer N, Gateva V, Herder C, Hofman A, Hughes TE, Hunt S, Illig T, Inouye M, Isomaa B, Johnson T, Kong A, Krestyaninova M, Kuusisto J, Laakso M, Lim N, Lindblad U, Lindgren CM, McCann OT, Mohlke KL, Morris AD, Naitza S, Orru M, Palmer CN, Pouta A, Randall J, Rathmann W, Saramies J, Scheet P, Scott LJ, Scuteri A, Sharp S, Sijbrands E, Smit JH, Song K, Steinthorsdottir V, Stringham HM, Tuomi T, Tuomilehto J, Uitterlinden AG, Voight BF, Waterworth D, Wichmann HE, Willemsen G, Witteman JC, Yuan X, Zhao JH, Zeggini E, Schlessinger D, Sandhu M, Boomsma DI, Uda M, Spector TD, Penninx BW, Altshuler D, Vollenweider P, Jarvelin MR, Lakatta E, Waeber G, Fox CS, Peltonen L, Groop LC, Mooser V, Cupples LA,

Thorsteinsdottir U, Boehnke M, Barroso I, Van Duijn C, Dupuis J, Watanabe RM, Stefansson K, McCarthy MI, Wareham NJ, Meigs JB, Abecasis GR: Variants in MTNR1B influence fasting glucose levels. *Nat Genet* 41:77–81, 2009

- 358. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spegel P, Bugliani M, Saxena R, Fex M, Pulizzi N, Isomaa B, Tuomi T, Nilsson P, Kuusisto J, Tuomilehto J, Boehnke M, Altshuler D, Sundler F, Eriksson JG, Jackson AU, Laakso M, Marchetti P, Watanabe RM, Mulder H, Groop L: Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 41:82–88, 2009
- 359. Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, Dechaume A, Payne F, Roussel R, Czernichow S, Hercberg S, Hadjadj S, Balkau B, Marre M, Lantieri O, Langenberg C, Bouatia-Naji N; Meta-Analysis of Glucose and Insulin-Related Traits Consortium (MAGIC), Charpentier G, Vaxillaire M, Rocheleau G, Wareham NJ, Sladek R, McCarthy MI, Dina C, Barroso I, Jockers R, Froguel P: Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297–301, 2012
- 360. McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP: Melatonin secretion and the incidence of type 2 diabetes. JAMA 309:1388–1396, 2013
- 361. Diethelm K, Libuda L, Bolzenius K, Griefahn B, Buyken AE, Remer T: Longitudinal associations between endogenous melatonin production and reported sleep duration from childhood to early adulthood. *Horm Res Paediatr* 74:390–398, 2010
- 362. Hernandez C, Abreu J, Abreu P, Castro A, Jimenez A: Nocturnal melatonin plasma levels in patients with OSAS: the effect of CPAP. Eur Respir J 30:496–500, 2007
- 363. Garfinkel D, Zorin M, Wainstein J, Matas Z, Laudon M, Zisapel N: Efficacy and safety of prolonged-release melatonin in insomnia patients with diabetes: a randomized, double-blind, crossover study. Diabetes Metab Syndr Obes 4:307–313, 2011
- 364. Rubio-Sastre P, Scheer FA, Gomez-Abellan P, Madrid JA, Garaulet M: Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. *Sleep* 37:1715– 1719, 2014
- 365. Vasisht KP, Kessler LE, Booth JN, 3rd, Imperial JG, Penev PD: Differences in insulin secretion and sensitivity in shortsleep insomnia. Sleep 36:955–957, 2013

- 366. Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, Basta M, Fernandez-Mendoza J, Bixler EO: Insomnia with short sleep duration and mortality: the Penn State cohort. Sleep 33:1159–1164, 2010
- 367. Cespedes EM, Dudley KA, Sotres-Alvarez D, Zee PC, Daviglus ML, Shah NA, Talavera GA, Gallo LC, Mattei J, Qi Q, Ramos AR, Schneiderman N, Espinoza-Giacinto RA, Patel SR: Joint associations of insomnia and sleep duration with prevalent diabetes: the Hispanic Community Health Study/ Study of Latinos (HCHS/SOL). J Diabetes 8:387–397, 2016
- 368. Kim NH, Lee SK, Eun CR, Seo JA, Kim SG, Choi KM, Baik SH, Choi DS, Yun CH, Kim NH, Shin C: Short sleep duration combined with obstructive sleep apnea is associated with visceral obesity in Korean adults. Sleep 36:723–729, 2013
- 369. Chin K, Oga T, Takahashi K, Takegami M, Nakayama-Ashida Y, Wakamura T, Sumi K, Nakamura T, Horita S, Oka Y, Minami I, Fukuhara S, Kadotani H: Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan. *Sleep* 33:89–95, 2010
- 370. Siwasaranond N, Nimitphong H, Saetung S, Chirakalwasan N, Ongphiphadhanakul B, Reutrakul S: Shorter sleep duration is associated with poorer glycemic control in type 2 diabetes patients with untreated sleep-disordered breathing. *Sleep Breath* 20:569–574, 2016
- 371. Lajoie P, Aronson KJ, Day A, Tranmer J: A cross-sectional study of shift work, sleep quality and cardiometabolic risk in female hospital employees. *BMJ Open* 5:e007327, 2015
- 372. Laudencka A, Klawe JJ, Tafil-Klawe M, Zlomanczuk P: Does night-shift work induce apnea events in obstructive sleep apnea patients? J Physiol Pharmacol 58(Suppl 5):345–347, 2007
- 373. Paciorek M, Korczynski P, Bielicki P, Byskiniewicz K, Zielinski J, Chazan R: Obstructive sleep apnea in shift workers. Sleep Med 12:274–277, 2011
- 374. Gottlieb DJ, Punjabi NM, Newman AB, Resnick HE, Redline S, Baldwin CM, Nieto FJ: Association of sleep time with diabetes mellitus and impaired glucose tolerance. *Arch Intern Med* 165:863–867, 2005
- 375. Rafalson L, Donahue RP, Stranges S, Lamonte MJ, Dmochowski J, Dorn J, Trevisan M: Short sleep duration is associated with the development of impaired fasting glucose: the Western New York Health Study. Ann Epidemiol 20:883– 889, 2010

- 376. Grandner MA, Chakravorty S, Perlis ML, Oliver L, Gurubhagavatula I: Habitual sleep duration associated with self-reported and objectively determined cardiometabolic risk factors. *Sleep Med* 15:42–50, 2014
- 377. Jackson CL, Redline S, Kawachi I, Hu FB: Association between sleep duration and diabetes in black and white adults. *Diabetes Care* 36:3557–3565, 2013
- 378. Liu Y, Wheaton AG, Chapman DP, Croft JB: Sleep duration and chronic diseases among U.S. adults age 45 years and older: evidence from the 2010 Behavioral Risk Factor Surveillance System. *Sleep* 36:1421–1427, 2013
- 379. Zizi F, Pandey A, Murrray-Bachmann R, Vincent M, McFarlane S, Ogedegbe G, Jean-Louis G: Race/ethnicity, sleep duration, and diabetes mellitus: analysis of the National Health Interview Survey. Am J Med 125:162–167, 2012
- 380. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S: The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235, 1993
- 381. Bixler EO, Vgontzas AN, Ten Have T, Tyson K, Kales A: Effects of age on sleep apnea in men: I. prevalence and severity. Am J Respir Crit Care Med 157:144–148, 1998
- 382. Bixler EO, Vgontzas AN, Lin HM, Ten Have T, Rein J, Vela-Bueno A, Kales A: Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med 163:608–613, 2001
- 383. Bearpark H, Elliott L, Grunstein R, Cullen S, Schneider H, Althaus W, Sullivan C: Snoring and sleep apnea. A population study in Australian men. Am J Respir Crit Care Med 151:1459–1465, 1995
- 384. Udwadia ZF, Doshi AV, Lonkar SG, Singh CI: Prevalence of sleep-disordered breathing and sleep apnea in middle-aged urban Indian men. Am J Respir Crit Care Med 169:168–173, 2004
- 385. Ip MS, Lam B, Lauder IJ, Tsang KW, Chung KF, Mok YW, Lam WK: A community study of sleep-disordered breathing in middle-aged Chinese men in Hong Kong. Chest 119:62–69, 2001
- 386. Ip MS, Lam B, Tang LC, Lauder IJ, Ip TY, Lam WK: A community study of sleep-disordered breathing in middle-aged Chinese women in Hong Kong: prevalence and gender differences. *Chest* 125:127–134, 2004
- 387. Kim J, In K, Kim J, You S, Kang K, Shim J, Lee S, Lee J, Lee S, Park C, Shin C: Prevalence of sleep-disordered breathing in middle-aged Korean men and women. *Am J Respir Crit Care Med* 170:1108–1113, 2004

- 388. Tiihonen M, Partinen M, Narvanen S: The severity of obstructive sleep apnoea is associated with insulin resistance. J Sleep Res 2:56–61, 1993
- 389. Strohl KP, Novak RD, Singer W, Cahan C, Boehm KD, Denko CW, Hoffstem VS: Insulin levels, blood pressure and sleep apnea. *Sleep* 17:614–618, 1994
- 390. Davies RJ, Turner R, Crosby J, Stradling JR: Plasma insulin and lipid levels in untreated obstructive sleep apnoea and snoring; their comparison with matched controls and response to treatment. *J Sleep Res* 3:180–185, 1994
- 391. Grunstein RR, Stenlof K, Hedner J, Sjostrom L: Impact of obstructive sleep apnea and sleepiness on metabolic and cardiovascular risk factors in the Swedish Obese Subjects (SOS) Study. Int J Obes Relat Metab Disord 19:410–418, 1995
- 392. Stoohs RA, Facchini F, Guilleminault C: Insulin resistance and sleep-disordered breathing in healthy humans. Am J Respir Crit Care Med 154:170–174, 1996
- 393. Ip MS, Lam KS, Ho C, Tsang KW, Lam W: Serum leptin and vascular risk factors in obstructive sleep apnea. *Chest* 118:580– 586, 2000
- 394. Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, Kales A, Chrousos GP: Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 85:1151–1158, 2000
- 395. Elmasry A, Lindberg E, Berne C, Janson C, Gislason T, Awad Tageldin M, Boman G: Sleep-disordered breathing and glucose metabolism in hypertensive men: a population-based study. *J Intern Med* 249:153–161, 2001
- 396. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS: Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 165:670–676, 2002
- 397. Manzella D, Parillo M, Razzino T, Gnasso P, Buonanno S, Gargiulo A, Caputi M, Paolisso G: Soluble leptin receptor and insulin resistance as determinant of sleep apnea. *Int J Obes Relat Metab Disord* 26:370–375, 2002
- 398. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL: Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. *Am J Respir Crit Care Med* 165:677–682, 2002
- 399. Meslier N, Gagnadoux F, Giraud P, Person C, Ouksel H, Urban T, Racineux JL: Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome. *Eur Respir J* 22:156–160, 2003

- 400. Tassone F, Lanfranco F, Gianotti L, Pivetti S, Navone F, Rossetto R, Grottoli S, Gai V, Ghigo E, Maccario M: Obstructive sleep apnoea syndrome impairs insulin sensitivity independently of anthropometric variables. *Clin Endocrinol* (*Oxf*) 59:374–379, 2003
- 401. Barcelo A, Barbe F, Llompart E, Mayoralas LR, Ladaria A, Bosch M, Agusti AG:
 Effects of obesity on c-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am J Med 117:118–121, 2004
- 402. Makino S, Handa H, Suzukawa K, Fujiwara M, Nakamura M, Muraoka S, Takasago I, Tanaka Y, Hashimoto K, Sugimoto T: Obstructive sleep apnoea syndrome, plasma adiponectin levels, and insulin resistance. *Clin Endocrinol (Oxf)* 64:12–19, 2006
- 403. Kapsimalis F, Varouchakis G, Manousaki A, Daskas S, Nikita D, Kryger M, Gourgoulianis K: Association of sleep apnea severity and obesity with insulin resistance, c-reactive protein, and leptin levels in male patients with obstructive sleep apnea. *Lung* 186:209–217, 2008
- 404. Theorell-Haglow J, Berne C, Janson C, Lindberg E: Obstructive sleep apnoea is associated with decreased insulin sensitivity in females. *Eur Respir J* 31:1054–1060, 2008
- 405. Tkacova R, Dorkova Z, Molcanyiova A, Radikova Z, Klimes I, Tkac I: Cardiovascular risk and insulin resistance in patients with obstructive sleep apnea. *Med Sci Monit* 14:CR438–CR444, 2008
- 406. Punjabi NM, Beamer BA: Alterations in glucose disposal in sleep-disordered breathing. *Am J Respir Crit Care Med* 179:235–240, 2009
- 407. Kelly A, Dougherty S, Cucchiara A, Marcus CL, Brooks LJ: Catecholamines, adiponectin, and insulin resistance as measured by HOMA in children with obstructive sleep apnea. *Sleep* 33:1185– 1191, 2010
- 408. Deboer MD, Mendoza JP, Liu L, Ford G, Yu PL, Gaston BM: Increased systemic inflammation overnight correlates with insulin resistance among children evaluated for obstructive sleep apnea. *Sleep Breath* 16:349–354, 2012
- 409. Seicean S, Kirchner HL, Gottlieb DJ, Punjabi NM, Resnick H, Sanders M, Budhiraja R, Singer M, Redline S: Sleepdisordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: the Sleep Heart Health Study. *Diabetes Care* 31:1001–1006, 2008
- 410. Tuomilehto H, Peltonen M, Partinen M, Seppa J, Saaristo T, Korpi-Hyovalti E,

Oksa H, Puolijoki H, Saltevo J, Vanhala M, Tuomilehto J: Sleep duration is associated with an increased risk for the prevalence of type 2 diabetes in middle-aged women—the FIN-D2D survey. *Sleep Med* 9:221–227, 2008

- 411. Al-Delaimy WK, Manson JE, Willett WC, Stampfer MJ, Hu FB: Snoring as a risk factor for type II diabetes mellitus: a prospective study. *Am J Epidemiol* 155:387–393, 2002
- 412. Leineweber C, Kecklund G, Akerstedt T, Janszky I, Orth-Gomer K: Snoring and the metabolic syndrome in women. *Sleep Med* 4:531–536, 2003
- 413. Coughlin SR, Mawdsley L, Mugarza JA, Calverley PM, Wilding JP: Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. *Eur Heart J* 25:735–741, 2004
- 414. Dursunoglu N, Dursunoglu D, Ozkurt S, Kiter G, Evyapan F: Gender differences in global cardiovascular risk factors of obstructive sleep apnea patients. *Tuberk Toraks* 54:305–314, 2006
- 415. Sasanabe R, Banno K, Otake K, Hasegawa R, Usui K, Morita M, Shiomi T: Metabolic syndrome in Japanese patients with obstructive sleep apnea syndrome. *Hypertens Res* 29:315–322, 2006
- 416. Gruber A, Horwood F, Sithole J, Ali NJ, Idris I: Obstructive sleep apnoea is independently associated with the metabolic syndrome but not insulin resistance state. *Cardiovasc Diabetol* 5:22, 2006
- 417. Lam JC, Lam B, Lam CL, Fong D, Wang JK, Tse HF, Lam KS, Ip MS: Obstructive sleep apnea and the metabolic syndrome in community-based Chinese adults in Hong Kong. *Respir Med* 100:980–987, 2006
- 418. Onat A, Hergenc G, Uyarel H, Yazici M, Tuncer M, Dogan Y, Can G, Rasche K: Obstructive sleep apnea syndrome is associated with metabolic syndrome rather than insulin resistance. *Sleep Breath* 11:23–30, 2007
- 419. Peled N, Kassirer M, Shitrit D, Kogan Y, Shlomi D, Berliner AS, Kramer MR: The association of OSA with insulin resistance, inflammation and metabolic syndrome. *Respir Med* 101:1696–1701, 2007
- 420. Kono M, Tatsumi K, Saibara T, Nakamura A, Tanabe N, Takiguchi Y, Kuriyama T: Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome. *Chest* 131:1387– 1392, 2007
- 421. Parish JM, Adam T, Facchiano L: Relationship of metabolic syndrome and obstructive sleep apnea. *J Clin Sleep Med* 3:467–472, 2007

- 422. Katsumata K, Okada T, Miyao M, Katsumata Y: High incidence of sleep apnea syndrome in a male diabetic population. *Diabetes Res Clin Pract* 13:45–51, 1991
- 423. Renko AK, Hiltunen L, Laakso M, Rajala U, Keinanen-Kiukaanniemi S: The relationship of glucose tolerance to sleep disorders and daytime sleepiness. *Diabetes Res Clin Pract* 67:84–91, 2005
- 424. West SD, Nicoll DJ, Stradling JR: Prevalence of obstructive sleep apnoea in men with type 2 diabetes. *Thorax* 61:945–950, 2006
- 425. Juuti AK, Hiltunen L, Rajala U, Laakso M, Harkonen P, Hedberg P, Ruokonen A, Keinanen-Kiukaanniemi S, Laara E: Association of abnormal glucose tolerance with self-reported sleep apnea among a 57-year-old urban population in Northern Finland. *Diabetes Res Clin Pract* 80:477–482, 2008
- 426. Venkateswaran S, Shankar P: The prevalence of syndrome Z (the interaction of obstructive sleep apnoea with the metabolic syndrome) in a teaching hospital in Singapore. *Postgrad Med J* 83:329–331, 2007
- 427. Takama N, Kurabayashi M: Relationship between metabolic syndrome and sleep-disordered breathing in patients with cardiovascular disease—metabolic syndrome as a strong factor of nocturnal desaturation. Intern Med 47:709–715, 2008
- 428. Mikuni E, Ohoshi T, Hayashi K, Miyamura K: Glucose intolerance in an employed population. *Tohoku J Exp Med* 141(Suppl):251–256, 1983
- 429. Nagaya T, Yoshida H, Takahashi H, Kawai M: Markers of insulin resistance in day and shift workers aged 30–59 years. Int Arch Occup Environ Health 75:562–568, 2002
- 430. Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS: Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. *Int Arch Occup Environ Health* 76:424–430, 2003
- 431. Ika K, Suzuki E, Mitsuhashi T, Takao S, Doi H: Shift work and diabetes mellitus among male workers in Japan: does the intensity of shift work matter? Acta Med Okayama 67:25–33, 2013