BOLD & Diffusion MRI for Evaluating Renal Oxygenation & Fibrosis in CKD

Pottumarthi V. Prasad, Ph.D. Sr. Research Scientist NorthShore University HealthSystem Professor of Radiology (part time) Pritzker School of Medicine, University of Chicago

Motivation: Need for Novel Markers

- Chronic Kidney Disease (CKD) is a slow and progressive loss of renal function
 - Based on current clinical marker (estimated GFR),
 30 million people in US are classified to have CKD
 - About 120 K per year will progress to ESRD where the options will be limited to replacement

» Need for markers for progressive CKD

Motivation: Role for Oxygenation & Fibrosis in CKD

Chronic Hypoxia Hypothesis

- Fine LG et al., *Kidney Int Suppl* 1998; 65:S74-8
- Initiating glomerular injury leads to loss of microvasculature, leading to development of hypoxia and fibrosis ...
- Translation to humans require non-invasive methods
 - » there are no non-invasive markers for renal oxygenation
 - » Histology remains the only accepted method to evaluate renal fibrosis

Blood Oxygenation Level Dependent (BOLD) MRI

TE=3.1

TE=14.9 TE=10.9

TE=18.8

TE=26.6

TE=30.5

TE=7.0

MRI signal

BOLD MRI: Replicates Invasive Measurements

Micro-electrodes

Invest Radiol. 2006 Feb;41(2):181

Effect of furosemide *Am J Physiol.* 1994;267:F1059

Diffusion MRI

 $b s/mm^2 = 200$

1000

Diffusion: Dependence of fibrosis

Kidney

Radiology (2010) 55: 3: 772-80

Magnetic Resonance Imaging 47 (2018) 118–124

Renal BOLD & Diffusion MRI: Current Status

- Both sequences readily available on major vendor platforms
 - Independent verification by investigators world-wide
- Both applied together in the context of CKD
 - Inoue T et al., JASN. 2011;22(8):1429-34
 - Prasad P et al., *PloS one*. 2015;**10**(10):e0139661

BOLD & Diffusion MRI in CKD

JASN. 2011;22(8):1429-34

Renal BOLD & Diffusion MRI: Current Status

- Both sequences readily available on major vendor platforms
 - Independent verification by investigators world-wide
- Both applied together in the context of CKD
 - Inoue T et al., JASN. 2011;22(8):1429-34
 - Prasad P et al., *PloS one*. 2015;10(10):e0139661
- Highly reproducible comparable when repeated on the same day or up to 18 months apart
 - Li L et al., JMRI 2018 [in press]
- Preliminary data supporting use in multicenter trials
 Presed B et al. *Kidney Int. Benerte* 2018 lin presel
 - Prasad P et al., Kidney Int. Reports 2018 [in press]

Data from Multiple Sites in Advanced CKD

	Control/CKD	n	Mean±sd	p
Cortex R2* (s ⁻¹)	Control	13	18.8±2.4	0.000
	CKD	123	20.6±3.1	0.022
Medulla R2* (s ⁻¹)	Control	13	29.0±3.9	4 0 04
	CKD	123	23.8±3.2	< 0.01
Medulla ∆R2* (s⁻¹)	Control	13	6.3±3.5	0.000
	CKD	54	2.5±2.5	0.002
ADC x10 ⁻³ mm ² /s	Control	13	1.67±0.08	< 0.01
	CKD	126	1.45±0.17	

Kidney Int Rep. 2018 (in press)

Renal BOLD & Diffusion MRI: Current Status

- Both sequences readily available on major vendor platforms
 - Independent verification by investigators world-wide
- Both applied together in the context of CKD
 - Inoue T et al., JASN. 2011;22(8):1429-34
 - Prasad P et al., PloS one. 2015;10(10):e0139661
- Highly reproducible comparable when repeated on the same day or up to 18 months apart
 - Li L et al., JMRI 2018 [in press]
- Preliminary data supporting use in multicenter trials

 Prasad P et al., *Kidney Int. Reports* 2018 [in press]
- Data supporting sensitivity to disease progression
 - Pruijm M et al., *Kidney Int.* 2018; 93(4):932-940
 - Li L et al., Poster #9
 - Srivastava et al., Poster #17

Progression in CKD: Cortical R2*, ∆(Med-Cor) R2*

Associations with yearly change in eGFR

	Fully adjusted* β	p
Cortex R2* (s ⁻¹)	-0.44(-0.76 to -0.11)	0.009
Δ (Med-Cor) R2*	0.45 (0.11 to 0.80)	0.01
Proteinuria (g/24 hr)	-1.49 (-2.65 to -0.33)	0.012

*Adjusted for age, sex, diabetes, eGFR, proteinuria, and use of RAS blockers

	Progressors	Non- progressors	p
Cortex R2*	21.3±2.6	20.2±1.9	0.033
Δ (Med-Cor) R2*	7.3±2.8	8.2±2.9	0.038

*Progressors: eGFR decline > 3 ml/min/yr

Kidney Int. 2018 Apr;93(4):932-940

Progression in CKD: Medulla ∆R2*

	Progressors	Non-progressors	p
Medulla ∆R2* (s ⁻¹)	1.90±2.53	5.39 ± 3.65	0.007

Li et al, Poster # 9

Progression in CKD: ADC

Srivastava et al, Poster # 17

What else do we need?

- Even though proof-of-concept evidence is available, further investigations necessary to
 - improve sensitivity and/or specificity
 - » Important to translate to clinic where decisions need to be made on an individual basis
 - » Reason to look at contrast agents for fibrosis
 - Demonstrate whether these markers can be used to monitor interventions
 - Include more non-invasive measures
 - » PARENCHIMA includes ASL, T1, PC-BF
 - Develop objective analytical tools